Urine cell-based DNA methylation classifier for monitoring bladder cancer

dc.contributor.authorHeijden, Antoine G. van der
dc.contributor.authorMengual Brichs, Lourdes
dc.contributor.authorIngelmo-Torres, Mercedes
dc.contributor.authorLozano Salvatella, Juan José
dc.contributor.authorRijt-van de Westerlo, Cindy C. M. van
dc.contributor.authorBaixauli, Montserrat
dc.contributor.authorGeavlete, Bogdan
dc.contributor.authorMoldoveanud, Cristian
dc.contributor.authorEne, Cosmin
dc.contributor.authorDinney, Colin P.
dc.contributor.authorCzerniak, Bogdan
dc.contributor.authorSchalken, Jack A.
dc.contributor.authorKiemeney, Lambertus A. L. M.
dc.contributor.authorRibal, María José
dc.contributor.authorWitjes, J. Alfred
dc.contributor.authorAlcaraz Asensio, Antonio
dc.date.accessioned2019-06-07T13:45:03Z
dc.date.available2019-06-07T13:45:03Z
dc.date.issued2018-05-30
dc.date.updated2019-06-07T13:45:03Z
dc.description.abstractBackground: Current standard methods used to detect and monitor bladder cancer (BC) are invasive or have low sensitivity. This study aimed to develop a urine methylation biomarker classifier for BC monitoring and validate this classifier in patients in follow-up for bladder cancer (PFBC). Methods: Voided urine samples (N = 725) from BC patients, controls, and PFBC were prospectively collected in four centers. Finally, 626 urine samples were available for analysis. DNA was extracted from the urinary cells and bisulfite modificated, and methylation status was analyzed using pyrosequencing. Cytology was available from a subset of patients (N = 399). In the discovery phase, seven selected genes from the literature (CDH13, CFTR, NID2, SALL3, TMEFF2, TWIST1, and VIM2) were studied in 111 BC and 57 control samples. This training set was used to develop a gene classifier by logistic regression and was validated in 458 PFBC samples (173 with recurrence). Results: A three-gene methylation classifier containing CFTR, SALL3, and TWIST1 was developed in the training set (AUC 0.874). The classifier achieved an AUC of 0.741 in the validation series. Cytology results were available for 308 samples from the validation set. Cytology achieved AUC 0.696 whereas the classifier in this subset of patients reached an AUC 0.768. Combining the methylation classifier with cytology results achieved an AUC 0.86 in the validation set, with a sensitivity of 96%, a specificity of 40%, and a positive and negative predictive value of 56 and 92%, respectively. Conclusions: The combination of the three-gene methylation classifier and cytology results has high sensitivity and high negative predictive value in a real clinical scenario (PFBC). The proposed classifier is a useful test for predicting BC recurrence and decrease the number of cystoscopies in the follow-up of BC patients. If only patients with a positive combined classifier result would be cystoscopied, 36% of all cystoscopies can be prevented.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec686135
dc.identifier.issn1868-7075
dc.identifier.pmid29854012
dc.identifier.urihttps://hdl.handle.net/2445/134785
dc.language.isoeng
dc.publisherBioMed Central
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1186/s13148-018-0496-x
dc.relation.ispartofClinical Epigenetics, 2018, vol. 10, p. 71
dc.relation.urihttps://doi.org/10.1186/s13148-018-0496-x
dc.rightscc-by (c) Heijden, Antoine G. van der et al., 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Biomedicina)
dc.subject.classificationCàncer de bufeta
dc.subject.classificationExpressió gènica
dc.subject.classificationOrina
dc.subject.classificationCitologia
dc.subject.otherBladder cancer
dc.subject.otherGene expression
dc.subject.otherUrine
dc.subject.otherCytology
dc.titleUrine cell-based DNA methylation classifier for monitoring bladder cancer
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
686135.pdf
Mida:
790.47 KB
Format:
Adobe Portable Document Format