High-resolution synthesis of high-density breast mammograms: Application to improved fairness in deep learning based mass detection

dc.contributor.authorGarrucho, Lidia
dc.contributor.authorKushibar, Kaisar
dc.contributor.authorOsuala, Richard
dc.contributor.authorDíaz, Oliver
dc.contributor.authorCatanese, Alesandro
dc.contributor.authorRiego, Javier del
dc.contributor.authorBobowicz, Maciej
dc.contributor.authorStrand, Fredrik
dc.contributor.authorIgual Muñoz, Laura
dc.contributor.authorLekadir, Karim, 1977-
dc.date.accessioned2025-05-02T08:50:05Z
dc.date.available2025-05-02T08:50:05Z
dc.date.issued2023-01-23
dc.date.updated2025-05-02T08:50:05Z
dc.description.abstractComputer-aided detection systems based on deep learning have shown goodperformance in breast cancer detection. However, high-density breasts showpoorer detection performance since dense tissues can mask or even simulatemasses. Therefore, the sensitivity of mammography for breast cancer detectioncan be reduced by more than 20% in dense breasts. Additionally, extremelydense cases reported an increased risk of cancer compared to low-densitybreasts. This study aims to improve the mass detection performance in highdensitybreasts using synthetic high-density full-field digital mammograms(FFDM) as data augmentation during breast mass detection model training. Tothis end, a total of five cycle-consistent GAN (CycleGAN) models using threeFFDM datasets were trained for low-to-high-density image translation in highresolutionmammograms. The training images were split by breast density <em>BIRADS</em>categories, being <em>BI-RADS A </em>almost entirely fatty and <em>BI-RADS D</em>extremely dense breasts. Our results showed that the proposed dataaugmentation technique improved the sensitivity and precision of massdetection in models trained with small datasets and improved the domaingeneralization of the models trained with large databases. In addition, theclinical realism of the synthetic images was evaluated in a reader studyinvolving two expert radiologists and one surgical oncologist.
dc.format.extent17 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec729421
dc.identifier.issn2234-943X
dc.identifier.urihttps://hdl.handle.net/2445/220766
dc.language.isoeng
dc.publisherFrontiers Media
dc.relation.isformatofReproducció del document publicat a: https://doi.org/https://doi.org/10.3389/fonc.2022.1044496
dc.relation.ispartofFrontiers In Oncology, 2023, vol. 12
dc.relation.urihttps://doi.org/https://doi.org/10.3389/fonc.2022.1044496
dc.rightscc-by (c) Garrucho L. et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationMamografia
dc.subject.classificationCàncer de mama
dc.subject.classificationAprenentatge automàtic
dc.subject.otherMammography
dc.subject.otherBreast cancer
dc.subject.otherMachine learning
dc.titleHigh-resolution synthesis of high-density breast mammograms: Application to improved fairness in deep learning based mass detection
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
256435.pdf
Mida:
10.09 MB
Format:
Adobe Portable Document Format

Paquet de llicències

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
license.txt
Mida:
1.71 KB
Format:
Item-specific license agreed upon to submission
Descripció: