El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Fonollosa et al., 2012
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/30868

Quality coding by neural populations in the early olfactory pathway: analysis using information theory

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In this article, we analyze the ability of the early olfactory system to detect and discriminate different odors by means of information theory measurements applied to olfactory bulb activity images. We have studied the role that the diversity and number of receptor neuron types play in encoding chemical information. Our results show that the olfactory receptors of the biological system are low correlated and present good coverage of the input space. The coding capacity of ensembles of olfactory receptors with the same receptive range is maximized when the receptors cover half of the odor input space - a configuration that corresponds to receptors that are not particularly selective. However, the ensemble's performance slightly increases when mixing uncorrelated receptors of different receptive ranges. Our results confirm that the low correlation between sensors could be more significant than the sensor selectivity for general purpose chemo-sensory systems, whether these are biological or biomimetic.

Citació

Citació

FONOLLOSA MAGRINYÀ, Jordi, GUTIÉRREZ GÁLVEZ, Agustín, MARCO COLÁS, Santiago. Quality coding by neural populations in the early olfactory pathway: analysis using information theory. _PLoS ONE_. 2012. Vol.  7(6): e37809. [consulta: 7 de gener de 2026]. ISSN: 1932-6203. [Disponible a: https://hdl.handle.net/2445/30868]

Exportar metadades

JSON - METS

Compartir registre