Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Robert Florido et al., 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/222644

Dynamics of projectable functions: Towards an atlas of wandering domains for a family of Newton maps.

Títol de la revista

ISSN de la revista

Títol del volum

Resum

We present a one-parameter family $F_\lambda$ of transcendental entire functions with zeros, whose Newton's method yields wandering domains, coexisting with the basins of the roots of $F_\lambda$. Wandering domains for Newton maps of zero-free functions have been built before by, e.g. Buff and Rückert [23] based on the lifting method. This procedure is suited to our Newton maps as members of the class of projectable functions (or maps of the cylinder), i.e. transcendental meromorphic functions $f(z)$ in the complex plane that are semiconjugate, via the exponential, to some map $g(w)$, which may have at most a countable number of essential singularities. In this paper, we make a systematic study of the general relation (dynamical and otherwise) between $f$ and $g$, and inspect the extension of the logarithmic lifting method of periodic Fatou components to our context, especially for those $g$ of finite-type. We apply these results to characterize the entire functions with zeros whose Newton's method projects to some map $g$ which is defined at both 0 and $\infty$. The family $F_\lambda$ is the simplest in this class, and its parameter space shows open sets of $\lambda$-values in which the Newton map exhibits wandering or Baker domains, in both cases regions of initial conditions where Newton's root-finding method fails.

Descripció

Citació

Citació

FLORIDO LLINÀS, Robert, FAGELLA RABIONET, Núria. Dynamics of projectable functions: Towards an atlas of wandering domains for a family of Newton maps.. _Proceedings of the Royal Society of Edinburgh: Section A Mathematics_. 2024. Vol. 2024. [consulta: 24 de novembre de 2025]. ISSN: 0308-2105. [Disponible a: https://hdl.handle.net/2445/222644]

Exportar metadades

JSON - METS

Compartir registre