Coloring minimal Cayley graphs.
| dc.contributor.author | García Marco, Ignacio | |
| dc.contributor.author | Knauer, Kolja | |
| dc.date.accessioned | 2025-12-03T15:53:56Z | |
| dc.date.available | 2025-12-03T15:53:56Z | |
| dc.date.issued | 2025-01-10 | |
| dc.date.updated | 2025-12-03T15:53:56Z | |
| dc.description.abstract | In 1978 Babai raised the question whether all minimal Cayley graphs have bounded chromatic number; in 1994 he conjectured a negative answer. In this paper we show that any minimal Cayley graph of a (finitely generated) generalized dihedral or nilpotent group has chromatic number at most 3, while 4 colors are sometimes necessary for soluble groups. On the other hand we address a related question proposed by Babai in 1978 by constructing graphs of unbounded chromatic number that admit a proper edge coloring such that each cycle has some color at least twice. The latter can be viewed as a step towards confirming Babai’s 1994 conjecture – a problem that remains open. | |
| dc.format.extent | 9 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 756065 | |
| dc.identifier.issn | 0195-6698 | |
| dc.identifier.uri | https://hdl.handle.net/2445/224639 | |
| dc.language.iso | eng | |
| dc.publisher | Elsevier Ltd. | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1016/j.ejc.2024.104108 | |
| dc.relation.ispartof | European Journal of Combinatorics, 2025 | |
| dc.relation.uri | https://doi.org/10.1016/j.ejc.2024.104108 | |
| dc.rights | cc-by-nc (c) García Marco, Ignacio et al., 2025 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by-nc/4.0/ | |
| dc.subject.classification | Teoria de grafs | |
| dc.subject.classification | Geometria combinatòria | |
| dc.subject.other | Graph theory | |
| dc.subject.other | Combinatorial geometry | |
| dc.title | Coloring minimal Cayley graphs. | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1