Coloring minimal Cayley graphs.

dc.contributor.authorGarcía Marco, Ignacio
dc.contributor.authorKnauer, Kolja
dc.date.accessioned2025-12-03T15:53:56Z
dc.date.available2025-12-03T15:53:56Z
dc.date.issued2025-01-10
dc.date.updated2025-12-03T15:53:56Z
dc.description.abstractIn 1978 Babai raised the question whether all minimal Cayley graphs have bounded chromatic number; in 1994 he conjectured a negative answer. In this paper we show that any minimal Cayley graph of a (finitely generated) generalized dihedral or nilpotent group has chromatic number at most 3, while 4 colors are sometimes necessary for soluble groups. On the other hand we address a related question proposed by Babai in 1978 by constructing graphs of unbounded chromatic number that admit a proper edge coloring such that each cycle has some color at least twice. The latter can be viewed as a step towards confirming Babai’s 1994 conjecture – a problem that remains open.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec756065
dc.identifier.issn0195-6698
dc.identifier.urihttps://hdl.handle.net/2445/224639
dc.language.isoeng
dc.publisherElsevier Ltd.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.ejc.2024.104108
dc.relation.ispartofEuropean Journal of Combinatorics, 2025
dc.relation.urihttps://doi.org/10.1016/j.ejc.2024.104108
dc.rightscc-by-nc (c) García Marco, Ignacio et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject.classificationTeoria de grafs
dc.subject.classificationGeometria combinatòria
dc.subject.otherGraph theory
dc.subject.otherCombinatorial geometry
dc.titleColoring minimal Cayley graphs.
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
884399.pdf
Mida:
415.53 KB
Format:
Adobe Portable Document Format