Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Bermúdez et al., 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/191293

Copula-based bivariate finite mixture regression models with an application for insurance claim count data

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Modeling bivariate (or multivariate) count data has received increased interest in recent years. The aim is to model the number of different but correlated counts taking into account covariate information. Bivariate Poisson regression models based on the shock model approach are widely used because of their simple form and interpretation. However, these models do not allow for overdispersion or negative correlation, and thus, other models have been proposed in the literature to avoid these limitations. The present paper proposes copula-based bivariate finite mixture of regression models. These models offer some advantages since they have all the benefits of a finite mixture, allowing for unobserved heterogeneity and clustering effects, while the copula-based derivation can produce more flexible structures, including negative correlations and regressors. In this paper, the new approach is defined, estimation through an EM algorithm is presented, and then different models are applied to a Spanish insurance claim count database

Citació

Citació

BERMÚDEZ, Lluís, KARLIS, Dimitris. Copula-based bivariate finite mixture regression models with an application for insurance claim count data. _TEST_. 2022. Vol. 31, núm. 1082-1099. [consulta: 21 de gener de 2026]. ISSN: 1133-0686. [Disponible a: https://hdl.handle.net/2445/191293]

Exportar metadades

JSON - METS

Compartir registre