Beyond group classification: Probabilistic differential diagnosis of frontotemporal dementia and Alzheimer's disease with MRI and CSF biomarkers

dc.contributor.authorPérez Millan, Agnès
dc.contributor.authorThirion, Bertrand
dc.contributor.authorFalgàs Martínez, Neus
dc.contributor.authorBorrego Écija, Sergi
dc.contributor.authorBosch Capdevila, Beatriz
dc.contributor.authorJuncà Parella, Jordi
dc.contributor.authorTort Merino, Adrià
dc.contributor.authorSarto Alonso, Jordi
dc.contributor.authorAugé Fradera, Josep Maria
dc.contributor.authorAntonell Boixader, Anna, 1978-
dc.contributor.authorBargalló Alabart, Núria
dc.contributor.authorBalasa, Mircea
dc.contributor.authorLladó Plarrumaní, Albert
dc.contributor.authorSánchez del Valle Díaz, Raquel
dc.contributor.authorSala Llonch, Roser
dc.date.accessioned2024-11-07T13:11:39Z
dc.date.available2024-11-07T13:11:39Z
dc.date.issued2024-09-03
dc.date.updated2024-11-07T13:11:40Z
dc.description.abstractNeuroimaging and fluid biomarkers are used to differentiate frontotemporal dementia (FTD) from Alzheimer's disease (AD). We implemented a machine learning algorithm that provides individual probabilistic scores based on magnetic resonance imaging (MRI) and cerebrospinal fluid (CSF) data. We investigated whether combining MRI and CSF levels could improve the diagnosis confidence. 215 AD patients, 103 FTD patients, and 173 healthy controls (CTR) were studied. With MRI data, we obtained an accuracy of 82 % for AD vs. FTD. A total of 74 % of FTD and 73 % of AD participants have a high probability of accurate diagnosis. Adding CSF-NfL and 14-3-3 levels improved the accuracy and the number of patients in the confidence group for differentiating FTD from AD. We obtain individual diagnostic probabilities with high precision to address the problem of confidence in the diagnosis. We suggest when MRI, CSF, or the combination are necessary to improve the FTD and AD diagnosis. This algorithm holds promise towards clinical applications as support to clinical findings or in settings with limited access to expert diagnoses.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec751458
dc.identifier.idimarina9442948
dc.identifier.issn0197-4580
dc.identifier.pmid39232438
dc.identifier.urihttps://hdl.handle.net/2445/216298
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.neurobiolaging.2024.08.008
dc.relation.ispartofNeurobiology of Aging, 2024, vol. 144, p. 1-11
dc.relation.urihttps://doi.org/10.1016/j.neurobiolaging.2024.08.008
dc.rightscc-by-nc (c) Pérez Millan, Agnès et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.sourceArticles publicats en revistes (Biomedicina)
dc.subject.classificationMalaltia d'Alzheimer
dc.subject.classificationMarcadors bioquímics
dc.subject.classificationImatges per ressonància magnètica
dc.subject.otherAlzheimer's disease
dc.subject.otherBiochemical markers
dc.subject.otherMagnetic resonance imaging
dc.titleBeyond group classification: Probabilistic differential diagnosis of frontotemporal dementia and Alzheimer's disease with MRI and CSF biomarkers
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
869850.pdf
Mida:
4.05 MB
Format:
Adobe Portable Document Format