Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier B.V., 2021
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/193830

Topological features of multivariate distributions: Dependency on the covariance matrix

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Topological data analysis provides a new perspective on many problems in the domain of complex systems. Here, we establish the dependency of mean values of functional $p$ norms of 'persistence landscapes' on a uniform scaling of the underlying multivariate distribution. Furthermore, we demonstrate that average values of $p$-norms are decreasing, when the covariance in a system is increasing. To illustrate the complex dependency of these topological features on changes in the variance-covariance matrix, we conduct numerical experiments utilizing bi-variate distributions with known statistical properties. Our results help to explain the puzzling behavior of $p$-norms derived from daily log-returns of major equity indices on European and US markets at the inception phase of the global financial meltdown caused by the COVID-19 pandemic.

Citació

Citació

AROMI, Lloyd l., KATZ, Yuri a., VIVES I SANTA EULÀLIA, Josep. Topological features of multivariate distributions: Dependency on the covariance matrix. _Communications In Nonlinear Science And Numerical Simulation_. 2021. Vol. 103, núm. 105996. [consulta: 27 de gener de 2026]. ISSN: 1007-5704. [Disponible a: https://hdl.handle.net/2445/193830]

Exportar metadades

JSON - METS

Compartir registre