Intrinsic Information-Theoretic Models

dc.contributor.authorBernal-Casas, D.
dc.contributor.authorOller i Sala, Josep Maria
dc.date.accessioned2025-07-25T10:09:13Z
dc.date.available2025-07-25T10:09:13Z
dc.date.issued2024-04-28
dc.date.updated2025-07-25T10:09:13Z
dc.description.abstractWith this follow-up paper, we continue developing a mathematical framework based on information geometry for representing physical objects. The long-term goal is to lay down informational foundations for physics, especially quantum physics. We assume that we can now model information sources as univariate normal probability distributions ( , 0), as before, but with a constant 0 not necessarily equal to 1. Then, we also relaxed the independence condition when modeling m sources of information. Now, we model m sources with a multivariate normal probability distribution ( , 0) with a constant variance–covariance matrix 0 not necessarily diagonal, i.e., with covariance values different to 0, which leads to the concept of modes rather than sources. Invoking Schrödinger’s equation, we can still break the information into m quantum harmonic oscillators, one for each mode, and with energy levels independent of the values of 0, altogether leading to the concept of “intrinsic”. Similarly, as in our previous work with the estimator’s variance, we found that the expectation of the quadratic Mahalanobis distance to the sample mean equals the energy levels of the quantum harmonic oscillator, being the minimum quadratic Mahalanobis distance at the minimum energy level of the oscillator and reaching the “intrinsic” Cramér–Rao lower bound at the lowest energy level. Also, we demonstrate that the global probability density function of the collective mode of a set of m quantum harmonic oscillators at the lowest energy level still equals the posterior probability distribution calculated using Bayes’ theorem from the sources of information for all data values, taking as a prior the Riemannian volume of the informative metric. While these new assumptions certainly add complexity to the mathematical framework, the results proven are invariant under transformations, leading to the concept of “intrinsic” information-theoretic models, which are essential for developing physics.
dc.format.extent14 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec748734
dc.identifier.issn1099-4300
dc.identifier.urihttps://hdl.handle.net/2445/222588
dc.language.isoeng
dc.publisherMDPI
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/e26050370
dc.relation.ispartofEntropy, 2024, vol. 26, num.5
dc.relation.urihttps://doi.org/10.3390/e26050370
dc.rightscc-by (c) D. Bernal-Casas et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Genètica, Microbiologia i Estadística)
dc.subject.classificationEquació de Schrödinger
dc.subject.classificationEstadística bayesiana
dc.subject.classificationVarietats de Riemann
dc.subject.otherSchrödinger equation
dc.subject.otherBayesian statistical decision
dc.subject.otherRiemannian manifolds
dc.titleIntrinsic Information-Theoretic Models
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
861306.pdf
Mida:
310.13 KB
Format:
Adobe Portable Document Format