Predicting venous thromboembolic events in patients with cancer using a new machine learning paradigm

dc.contributor.advisorPujol Vila, Oriol
dc.contributor.advisorSoria, José Manuel
dc.contributor.authorÁlvarez Cabrera, Pedro
dc.date.accessioned2022-02-18T11:16:11Z
dc.date.available2022-02-18T11:16:11Z
dc.date.issued2021-09-02
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona. Any: 2021. Tutor: Oriol Pujol Vila i José Manuel Soriaca
dc.description.abstract[en] The rise of machine learning in the last decade has facilitated great advances in fields such as medicine, where very powerful models have been developed, capable of predicting certain medical conditions with an accuracy never seen before. The present work is focused on predicting one of the leading causes of death among patients with cancer: venous thromboembolic events (VTE). Over the years, several statistical models based on clinical/genetic data have been developed, and have made it possible to create some risk assessment tools, like the Khorana score [2]. However, none of them are based on machine learning. In this way, we propose a new model that uses advanced machine learning techniques and is able to outperform all models currently available. Furthermore, the model is based on a very recent and promising learning paradigm that has barely been tested, hence it is a great opportunity for us to explore and evaluate it. This breakthrough ultimately has an impact on the patient’s quality of life, improving the ability to detect patients at high risk of developing a VTE, who would benefit from preventive treatment.ca
dc.format.extent40 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/183281
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Pablo Álvarez Cabrera, 2021
dc.rightscodi: GPL (c) Pablo Álvarez Cabrera, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationTromboembolisme
dc.subject.classificationMalalts de càncer
dc.subject.classificationTreballs de fi de màster
dc.subject.otherMachine learning
dc.subject.otherThromboembolism
dc.subject.otherCancer patients
dc.subject.otherMaster's theses
dc.titlePredicting venous thromboembolic events in patients with cancer using a new machine learning paradigmca
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 2 de 2
Carregant...
Miniatura
Nom:
tfm_pablo_alvarez_cabrera.pdf
Mida:
1.54 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria
Carregant...
Miniatura
Nom:
TFM-main.zip
Mida:
3.05 MB
Format:
ZIP file
Descripció:
Codi font