Risk mitigation in algorithmic accountability: The role of machine learning copies

dc.contributor.authorUnceta, Irene
dc.contributor.authorNin, Jordi
dc.contributor.authorPujol Vila, Oriol
dc.date.accessioned2020-12-03T11:03:24Z
dc.date.available2020-12-03T11:03:24Z
dc.date.issued2020-11-03
dc.date.updated2020-12-03T11:03:25Z
dc.description.abstractMachine learning plays an increasingly important role in our society and economy and is already having an impact on our daily life in many different ways. From several perspectives, machine learning is seen as the new engine of productivity and economic growth. It can increase the business efficiency and improve any decision-making process, and of course, spawn the creation of new products and services by using complex machine learning algorithms. In this scenario, the lack of actionable accountability-related guidance is potentially the single most important challenge facing the machine learning community. Machine learning systems are often composed of many parts and ingredients, mixing third party components or software-as-a-service APIs, among others. In this paper we study the role of copies for risk mitigation in such machine learning systems. Formally, a copy can be regarded as an approximated projection operator of a model into a target model hypothesis set. Under the conceptual framework of actionable accountability, we explore the use of copies as a viable alternative in circumstances where models cannot be re-trained, nor enhanced by means of a wrapper. We use a real residential mortgage default dataset as a use case to illustrate the feasibility of this approach.
dc.format.extent26 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec703977
dc.identifier.issn1932-6203
dc.identifier.pmid33141844
dc.identifier.urihttps://hdl.handle.net/2445/172487
dc.language.isoeng
dc.publisherPublic Library of Science (PLoS)
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1371/journal.pone.0241286
dc.relation.ispartofPLoS One, 2020, num. 0241286
dc.relation.urihttps://doi.org/10.1371/journal.pone.0241286
dc.rightscc-by (c) Unceta, Irene et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationAlgorismes
dc.subject.classificationEficiència industrial
dc.subject.otherMachine learning
dc.subject.otherAlgorithms
dc.subject.otherIndustrial efficiency
dc.titleRisk mitigation in algorithmic accountability: The role of machine learning copies
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
703977.pdf
Mida:
1.69 MB
Format:
Adobe Portable Document Format