De novo design of small molecules using variational and conditional variational autoencoders

dc.contributor.advisorVitrià i Marca, Jordi
dc.contributor.authorZavodnik, Ŝpela
dc.date.accessioned2020-05-29T07:09:00Z
dc.date.available2020-05-29T07:09:00Z
dc.date.issued2019-09-02
dc.descriptionTreballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Jordi Vitrià i Marcaca
dc.description.abstract[en] Chemical space is estimated to contain over 10 60 small synthetically feasible molecules and so far only a fraction of the space has been explored. Experimental techniques are time-consuming and expensive so computational methods, such as machine learning, are needed for efficient exploration. Here we looked at generative models, more specifically variational autoencoder (VAE) and conditional variational autoencoder (CVAE), used for designing new molecules. In the first part, we evaluated already written VAE and in the second part, we upgraded it to the CVAE. For the conditional vectors in CVAE we used B4 Signatures generated from Chemical Checker describing molecular properties. Both models performed well, however, CVAE showed many advantages.ca
dc.format.extent50 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/162997
dc.language.isoengca
dc.rightscc-by-sa (c) Špela Zavodnik, 2019
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-sa/3.0/es/*
dc.sourceMàster Oficial - Fonaments de la Ciència de Dades
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationXarxes neuronals (Informàtica)
dc.subject.classificationTreballs de fi de màster
dc.subject.classificationQuimioinformàtica
dc.subject.otherMachine learning
dc.subject.otherNeural networks (Computer science)
dc.subject.otherMaster's theses
dc.subject.otherCheminformatics
dc.titleDe novo design of small molecules using variational and conditional variational autoencodersca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
162997.pdf
Mida:
1.62 MB
Format:
Adobe Portable Document Format
Descripció:
Memòria