El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 
Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Garrote, 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/222761

Modification of 2D Graphene Membranes for Biogas Enrichment Using Machine-Learning Force Fields

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

The present project explores the use of grazynes, two-dimensional (2D) carbon allotropes nanoengineered with nanopores, as an innovative solution for separating CO₂ and CH₄ in biogas. This is achieved by performing substitutions of the hydrogen atoms originally located at the pore sites with different halogens (F, Cl, and Br). The system is assessed through theoretical simulations using Density Functional Theory (DFT), employing the Perdew–Burke–Ernzerhof (PBE) exchange-correlation functional, and including dispersive interactions via the Grimme D3 method (PBE-D3). The analysis focused on the diffusion of CO₂ and CH₄ through the pores of various halogenated grazynes. Adsorption energies and penetration energy barriers for both molecules were calculated, revealing that CO2 exhibits low adsorption and diffusion barriers, while CH₄ shows also low adsorption energies, but with significantly higher barriers. This implies that fluorinated grazynes are promising candidates for biogas upgrading. However, chlorine and bromine substitutions increase the atomic radius at the pore, reducing permeability and making these materials unsuitable for gas separation. Subsequently, diffusion rate constants were computed using Transition State Theory (TST), confirming that only fluorinated grazynes present large enough rate constants (k), indicating effective gas permeation, while chlorinated and brominated grazynes yield values close to zero, highlighting their poor performance as separation membranes. Thus, CO₂ could be largely selectively separated when using defective [1],[2]{2}-tetrafluorograzyne, specially when goes through various penetration cycles. The [1],[2]{2}-fluorograzyne and [1],[2]{2}-o-difluorograzyne were subjected to further study via Molecular Dynamics (MD) simulations using Machine-Learning Force Fields (ML-FF). Although the force field exhibited low training errors, the MD trajectories displayed chemically unrealistic behaviour, e.g. bent CO₂, implying that the model had not been exposed to a sufficiently diverse training set. Thermodynamic plots showed a sudden increase in temperature and energy during the simulation, which confirms that the system adopted unrealistic atomic configurations. Therefore, the force field must be trained with more data to ensure accurate and reliable MD-MLFF results.

Descripció

Treballs Finals de Grau de Química, Facultat de Química, Universitat de Barcelona, Any: 2025, Tutors:Francesc Viñes Solana, Pablo Gamallo Belmonte

Citació

Citació

GARRROTE FERRÉ, Biel. Modification of 2D Graphene Membranes for Biogas Enrichment Using Machine-Learning Force Fields. [consulta: 7 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/222761]

Exportar metadades

JSON - METS

Compartir registre