Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/170714
Quantization of nonlocal fractional field theories via the extension problem
Títol de la revista
Autors
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
We use the extension problem proposed by Caffarelli and Silvestre to study the quantization of a scalar nonlocal quantum field theory built out of the fractional Laplacian. We show that the quantum behavior of such a nonlocal field theory in d dimensions can be described in terms of a local action in d + 1 dimensions which can be quantized using the canonical operator formalism though giving up local commutativity. In particular, we discuss how to obtain the two-point correlation functions and the vacuum energy density of the nonlocal fractional theory as a brane limit of the bulk correlators. We show explicitly how the quantized extension problem reproduces exactly the same particle content of other approaches based on the spectral representation of the fractional propagator. We also briefly discuss the inverse fractional Laplacian and possible applications of this approach in general relativity and cosmology.
Matèries (anglès)
Citació
Citació
FRASSINO, Antonia m., Panella O.. Quantization of nonlocal fractional field theories via the extension problem. _Physical Review D_. 2019. Vol. 100, núm. 11, pàgs. 116008. [consulta: 14 de gener de 2026]. ISSN: 2470-0010. [Disponible a: https://hdl.handle.net/2445/170714]