Percolation transition and the onset of nonexponential relaxation in fully frustrated models

dc.contributor.authorFierro, Annalisacat
dc.contributor.authorFranzese, Giancarlocat
dc.contributor.authorCandia, Antonio decat
dc.contributor.authorConiglio, Antonio, 1940-cat
dc.date.accessioned2011-07-07T12:53:09Z
dc.date.available2011-07-07T12:53:09Z
dc.date.issued1999
dc.description.abstractWe numerically study the dynamical properties of fully frustrated models in two and three dimensions. The results obtained support the hypothesis that the percolation transition of the Kasteleyn-Fortuin clusters corresponds to the onset of stretched exponential autocorrelation functions in systems without disorder. This dynamical behavior may be due to the large scale effects of frustration, present below the percolation threshold. Moreover, these results are consistent with the picture suggested by Campbell et al. [J. Phys. C 20, L47 (1987)] in the space of configurations.eng
dc.format.extent7 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec513985
dc.identifier.issn1063-651X
dc.identifier.urihttps://hdl.handle.net/2445/18806
dc.language.isoengeng
dc.publisherThe American Physical Societyeng
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1103/PhysRevE.59.60cat
dc.relation.ispartofPhysical Review E, 1999, vol. 59, núm. 1, p. 60-66
dc.relation.urihttp://dx.doi.org/10.1103/PhysRevE.59.60
dc.rights(c) American Physical Society, 1999
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationModel d'Isingcat
dc.subject.classificationPercolació (Física estadística)cat
dc.subject.otherIsing modeleng
dc.subject.otherPercolation (Statistical physics)eng
dc.titlePercolation transition and the onset of nonexponential relaxation in fully frustrated modelseng
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
513985.pdf
Mida:
132.02 KB
Format:
Adobe Portable Document Format