Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc-by (c) Ramos Triguero, Anna et al., 2025
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/223228

Machine learning-driven blood biomarker profiling and EGCG intervention in fetal alcohol spectrum disorder

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Fetal alcohol spectrum disorders (FASD) is a complex neurodevelopmental condition caused by prenatal alcohol exposure (PAE), often underdiagnosed due to heterogeneous symptoms and diagnostic challenges. This study aimed to identify serum-based biomarkers for early FASD diagnosis and assess the potential of epigallocatechin gallate (EGCG), a natural antioxidant found in green tea, in modulating markers related to FASD. Luminex immunoassays were employed to analyze serum samples from FASD patients, identifying seven predictive biomarkers involved in neuroinflammation and immune dysregulation: IL-10, IFNγ, CCL2, NGFβ, IL-1β, CX3CL1, and CXCL16. These biomarkers reflect key disruptions in brain health, particularly in neuroinflammation, which contributes to the cognitive, behavioral, and mental health challenges frequently observed in FASD patients, including memory deficits, attention problems, and emotional dysregulation. To enhance diagnostic precision, machine learning (ML) models were trained on these biomarker datasets, with Random Forest (RF) achieving the highest accuracy (0.89), sensitivity (0.92), specificity (0.83), and ROC AUC (0.88). Additionally, an open-label pilot study in children diagnosed with FASD showed significant restoration of the levels of IFNy, CX3CL1, IL-1β, IL-10, and NGFβ after 12 months of EGCG treatment, suggesting its potential role in mitigating neuroinflammatory responses and promoting neurogenesis. These findings underscore the value of integrating serum biomarkers with ML-driven approaches to advance FASD diagnostics, while also identifying EGCG as a promising intervention for neurodevelopmental and mental health impairments associated with the disorder.

Citació

Citació

RAMOS-TRIGUERO, Anna, NAVARRO TAPIA, Elisabet, VIEIROS, Melina, MARTÍNEZ, Leopoldo, GARCÍA ALGAR, Óscar, ANDREU FERNÁNDEZ, Vicente. Machine learning-driven blood biomarker profiling and EGCG intervention in fetal alcohol spectrum disorder. _International Journal of Clinical And Health Psychology_. 2025. Vol. 25. [consulta: 24 de gener de 2026]. ISSN: 1697-2600. [Disponible a: https://hdl.handle.net/2445/223228]

Exportar metadades

JSON - METS

Compartir registre