Carregant...
Miniatura

Tipus de document

Document de treball

Data de publicació

Llicència de publicació

cc-by-nc-nd, (c) El Halimi et al., 2004
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/11510

Impact of incorrect assumptions on the covariance structure of random effects and/or residuals in nonlinear mixed models for repeated measures data

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

In this paper we analyse, using Monte Carlo simulation, the possible consequences of incorrect assumptions on the true structure of the random effects covariance matrix and the true correlation pattern of residuals, over the performance of an estimation method for nonlinear mixed models. The procedure under study is the well known linearization method due to Lindstrom and Bates (1990), implemented in the nlme library of S-Plus and R. Its performance is studied in terms of bias, mean square error (MSE), and true coverage of the associated asymptotic confidence intervals. Ignoring other criteria like the convenience of avoiding over parameterised models, it seems worst to erroneously assume some structure than do not assume any structure when this would be adequate.

Citació

Citació

EL HALIMI, Rachid, OCAÑA I REBULL, Jordi. Impact of incorrect assumptions on the covariance structure of random effects and/or residuals in nonlinear mixed models for repeated measures data. [consulta: 7 de febrer de 2026]. [Disponible a: https://hdl.handle.net/2445/11510]

Exportar metadades

JSON - METS

Compartir registre