Structural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance

dc.contributor.authorPluta, Radoslaw
dc.contributor.authorBoer, Roeland
dc.contributor.authorLorenzo Díaz, Fabián
dc.contributor.authorRussi, Silvia
dc.contributor.authorGómez, Hansel
dc.contributor.authorFernández López, Cris
dc.contributor.authorPérez Luque, Rosa
dc.contributor.authorOrozco López, Modesto
dc.contributor.authorEspinosa, Manuel
dc.contributor.authorColl, Miquel
dc.date.accessioned2018-11-12T17:02:53Z
dc.date.available2018-11-12T17:02:53Z
dc.date.issued2017-07-24
dc.date.updated2018-11-07T09:11:41Z
dc.description.abstractRelaxases are metal-dependent nucleases that break and join DNA for the initiation and completion of conjugative bacterial gene transfer. Conjugation is the main process through which antibiotic resistance spreads among bacteria, with multidrug-resistant staphylococci and streptococci infections posing major threats to human health. The MOBV family of relaxases accounts for approximately 85% of all relaxases found in Staphylococcus aureus isolates. Here, we present six structures of the MOBV relaxase MobM from the promiscuous plasmid pMV158 in complex with several origin of transfer DNA fragments. A combined structural, biochemical, and computational approach reveals that MobM follows a previously uncharacterized histidine/metal-dependent DNA processing mechanism, which involves the formation of a covalent phosphoramidate histidine-DNA adduct for cell-to-cell transfer. We discuss how the chemical features of the high-energy phosphorus-nitrogen bond shape the dominant position of MOBV histidine relaxases among small promiscuous plasmids and their preference toward Gram-positive bacteria.
dc.format.extent32 p.
dc.format.mimetypeapplication/pdf
dc.identifier.pmid28739894
dc.identifier.urihttps://hdl.handle.net/2445/126023
dc.language.isoeng
dc.publisherNational Academy of Sciences
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1073/pnas.1702971114
dc.relation.ispartofPNAS, 2017, vol. 114, num. 32, p. E6526-E653
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/675728/EU//BioExcel
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/676556/EU//MuG
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/260644/EU//SILVER
dc.relation.urihttp://dx.doi.org/10.1073/pnas.1702971114
dc.rights(c) Pluta et al., 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))
dc.subject.classificationResistència als medicaments
dc.subject.classificationADN
dc.subject.otherDrug resistance
dc.subject.otherDNA
dc.titleStructural basis of a histidine-DNA nicking/joining mechanism for gene transfer and promiscuous spread of antibiotic resistance
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Pluta_revised_manuscript_v2_plus_figs.pdf
Mida:
1.09 MB
Format:
Adobe Portable Document Format