Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by-nc-nd (c) Carme Cascante et al., 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/218955

On the radicality property for spaces of symbols of bounded Volterra operators

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

In \cite{Aleman:Cascante:Fabrega:Pascuas:Pelaez} it is shown that the Bloch space $\mathcal{B}$ in the unit disc has the following 

radicality property: if an analytic function $g$ satisfies that $g^n\in \mathcal{B}$, then $g^m\in \mathcal{B}$, for all $m\le n$. Since $\mathcal{B}$ coincides with the space $\mathcal{T}(A^p_\alpha)$ of analytic symbols $g$ such that the Volterra-type operator  

$T_gf(z)= \int_0^z f(\zeta)g'(\zeta)\,d\zeta$

 is bounded on the classical weighted Bergman space $A^p_\alpha$, the radicality property was used to study the composition of paraproducts $T_g$ and $S_gf=T_fg$ on $A^p_{\alpha}$. Motivated by this fact, we prove that $\mathcal{T}(A^p_\omega)$ also has the radicality property, for any radial weight $\omega$. Unlike the classical case, 

the lack of a precise description of $\mathcal{T}(A^p_\omega)$ for a general radial weight, induces us to prove the radicality property for $A^p_\omega$ from precise norm-operator results for compositions of analytic paraproducts.

Citació

Citació

CASCANTE, Ma. carme (maria carme), FÀBREGA CASAMITJANA, Joan, PASCUAS TIJERO, Daniel, PELÁEZ MÁRQUEZ, José ángel. On the radicality property for spaces of symbols of bounded Volterra operators. _Journal of Functional Analysis_. 2024. Vol. 287, núm. 12. [consulta: 10 de gener de 2026]. ISSN: 0022-1236. [Disponible a: https://hdl.handle.net/2445/218955]

Exportar metadades

JSON - METS

Compartir registre