Fitxers
Tipus de document
ArticleVersió
Versió publicadaData de publicació
Llicència de publicació
On the radicality property for spaces of symbols of bounded Volterra operators
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
In \cite{Aleman:Cascante:Fabrega:Pascuas:Pelaez} it is shown that the Bloch space $\mathcal{B}$ in the unit disc has the following
radicality property: if an analytic function $g$ satisfies that $g^n\in \mathcal{B}$, then $g^m\in \mathcal{B}$, for all $m\le n$. Since $\mathcal{B}$ coincides with the space $\mathcal{T}(A^p_\alpha)$ of analytic symbols $g$ such that the Volterra-type operator
$T_gf(z)= \int_0^z f(\zeta)g'(\zeta)\,d\zeta$
is bounded on the classical weighted Bergman space $A^p_\alpha$, the radicality property was used to study the composition of paraproducts $T_g$ and $S_gf=T_fg$ on $A^p_{\alpha}$. Motivated by this fact, we prove that $\mathcal{T}(A^p_\omega)$ also has the radicality property, for any radial weight $\omega$. Unlike the classical case,
the lack of a precise description of $\mathcal{T}(A^p_\omega)$ for a general radial weight, induces us to prove the radicality property for $A^p_\omega$ from precise norm-operator results for compositions of analytic paraproducts.
Matèries (anglès)
Citació
Citació
CASCANTE, Ma. carme (maria carme), FÀBREGA CASAMITJANA, Joan, PASCUAS TIJERO, Daniel, PELÁEZ MÁRQUEZ, José ángel. On the radicality property for spaces of symbols of bounded Volterra operators. _Journal of Functional Analysis_. 2024. Vol. 287, núm. 12. [consulta: 10 de gener de 2026]. ISSN: 0022-1236. [Disponible a: https://hdl.handle.net/2445/218955]