Anisotropic integral decomposition of depolarizing Mueller matrices
| dc.contributor.author | Ossikovski, Razvigor | |
| dc.contributor.author | Kuntman, Mehmet Ali | |
| dc.contributor.author | Arteaga Barriel, Oriol | |
| dc.date.accessioned | 2020-01-14T09:10:58Z | |
| dc.date.available | 2020-01-14T09:10:58Z | |
| dc.date.issued | 2019-06-15 | |
| dc.date.updated | 2020-01-14T09:10:58Z | |
| dc.description.abstract | We propose a novel, computationally efficient integral decomposition of depolarizing Mueller matrices allowing for the obtainment of a nondepolarizing estimate, as well as for the determination of the elementary polarization properties, in terms of mean values and variancescovariances of their fluctuations, of a weakly anisotropic depolarizing medium. We illustrate the decomposition on experimental examples and compare its performance to those of alternative decompositions | |
| dc.format.extent | 8 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 694275 | |
| dc.identifier.issn | 2578-7519 | |
| dc.identifier.uri | https://hdl.handle.net/2445/147721 | |
| dc.language.iso | eng | |
| dc.publisher | Optical Society of America | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1364/OSAC.2.001900 | |
| dc.relation.ispartof | OSA Continuum, 2019, vol. 2, num. 6, p. 1900-1907 | |
| dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/793774/EU//POLARSENSE | |
| dc.relation.uri | https://doi.org/10.1364/OSAC.2.001900 | |
| dc.rights | cc-by (c) Optical Society of America, 2019 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es | |
| dc.source | Articles publicats en revistes (Física Aplicada) | |
| dc.subject.classification | El·lipsometria | |
| dc.subject.other | Ellipsometry | |
| dc.title | Anisotropic integral decomposition of depolarizing Mueller matrices | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1