Carregant...
Miniatura

Tipus de document

Article

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Sergi Baena Miret et al., 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/217655

On weak-type (1, 1) for averaging type operators

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

It is known that, due to the fact that $L^{1, \infty}$ is not a Banach space, if $\left(T_j\right)_j$ is a sequence of bounded operators so that $$ T_j: L^1 \longrightarrow L^{1, \infty} $$ with norm less than or equal to $\left\|T_j\right\|$ and $\sum_j\left\|T_j\right\|<\infty$, nothing can be said about the operator $T=\sum_j T_j$. This is the origin of many difficult and open problems. However, if we assume that $$ T_j: L^1(u) \longrightarrow L^{1, \infty}(u), \quad \forall u \in A_1 $$ with norm less than or equal to $\varphi\left(\|u\|_{A_1}\right)\left\|T_j\right\|$, where $\varphi$ is a nondecreasing function and $A_1$ the Muckenhoupt class of weights, then we prove that, essentially, $$ T: L^1(u) \longrightarrow L^{1, \infty}(u), \quad \forall u \in A_1 $$ We shall see that this is the case of many interesting problems in Harmonic Analysis.

Citació

Citació

BAENA MIRET, Sergi, CARRO ROSSELL, María jesús. On weak-type (1, 1) for averaging type operators. _Journal of Functional Analysis_. 2023. Vol. 284, núm. 10. [consulta: 20 de gener de 2026]. ISSN: 0022-1236. [Disponible a: https://hdl.handle.net/2445/217655]

Exportar metadades

JSON - METS

Compartir registre