Higher differentiability results for solutions to a class of non-homogeneous elliptic problems under sub-quadratic growth conditions
| dc.contributor.author | Clop, Albert | |
| dc.contributor.author | Gentile, Andrea | |
| dc.contributor.author | Passarelli di Napoli, Antonia | |
| dc.date.accessioned | 2025-06-10T08:37:13Z | |
| dc.date.available | 2025-06-10T08:37:13Z | |
| dc.date.issued | 2023-05-29 | |
| dc.date.updated | 2025-06-10T08:37:13Z | |
| dc.description.abstract | We prove a sharp higher differentiability result for local minimizers of functionals of the form $$ \mathscr{F}(w, \Omega)=\int_{\Omega}[F(x, D w(x))-f(x) \cdot w(x)] d x $$ with non-autonomous integrand $F(x, \xi)$ which is convex with respect to the gradient variable, under $p$-growth conditions, with $1<p<2$. The main novelty here is that the results are obtained assuming that the partial map $x \mapsto D_{\xi} F(x, \xi)$ has weak derivatives in some Lebesgue space $L^q$ and the datum $f$ is assumed to belong to a suitable Lebesgue space $L^r$. We also prove that it is possible to weaken the assumption on the datum $f$ and on the map $x \mapsto D_{\xi} F(x, \xi)$, if the minimizers are assumed to be a priori bounded. | |
| dc.format.extent | 55 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 758717 | |
| dc.identifier.issn | 1664-3607 | |
| dc.identifier.uri | https://hdl.handle.net/2445/221444 | |
| dc.language.iso | eng | |
| dc.publisher | World Scientific Publishing | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/https://doi.org/10.1142/S166436072350008X | |
| dc.relation.ispartof | Bulletin Of Mathematical Sciences, 2023, vol. 13, num.2 | |
| dc.relation.uri | https://doi.org/https://doi.org/10.1142/S166436072350008X | |
| dc.rights | cc-by (c) Clop et al., 2023 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.source | Articles publicats en revistes (Matemàtiques i Informàtica) | |
| dc.subject.classification | Funcions convexes | |
| dc.subject.classification | Equacions diferencials el·líptiques | |
| dc.subject.classification | Teoria de control | |
| dc.subject.other | Convex functions | |
| dc.subject.other | Elliptic differential equations | |
| dc.subject.other | Control theory | |
| dc.title | Higher differentiability results for solutions to a class of non-homogeneous elliptic problems under sub-quadratic growth conditions | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1