Particle shape and orientation in laser diffraction and static image analysis size distribution analysis of micrometer sized rectangular particles

dc.contributor.authorTinke, A. P.
dc.contributor.authorCarnicer González, Arturo
dc.contributor.authorGovoreanu, R.
dc.contributor.authorScheltjens, G.
dc.contributor.authorLauwerysen, L.
dc.contributor.authorMertens, N.
dc.contributor.authorVanhoutte, K.
dc.contributor.authorBrewster, M. E.
dc.date.accessioned2013-05-17T11:46:02Z
dc.date.available2013-05-17T11:46:02Z
dc.date.issued2008
dc.date.updated2013-05-17T11:46:02Z
dc.description.abstractLaser diffraction (LD) and static image analysis (SIA) of rectangular particles [United States Pharmacopeia, USP30-NF25, General Chapter <776>, Optical Miroscopy.] have been systematically studied. To rule out sample dispersion and particle orientation as the root cause of differences in size distribution profiles, we immobilize powder samples on a glass plate by means of a dry disperser. For a defined region of the glass plate, we measure the diffraction pattern as induced by the dispersed particles, and the 2D dimensions of the individual particles using LD and optical microscopy, respectively. We demonstrate a correlation between LD and SIA, with the scattering intensity of the individual particles as the dominant factor. In theory, the scattering intensity is related to the square of the projected area of both spherical and rectangular particles. In traditional LD the size distribution profile is dominated by the maximum projected area of the particles (A). The diffraction diameters of a rectangular particle with length L and breadth B as measured by the LD instrument approximately correspond to spheres of diameter ØL and ØB respectively. Differences in the scattering intensity between spherical and rectangular particles suggest that the contribution made to the overall LD volume probability distribution by each rectangular particle is proportional to A2/L and A2/B. Accordingly, for rectangular particles the scattering intensity weighted diffraction diameter (SIWDD) explains an overestimation of their shortest dimension and an underestimation of their longest dimension. This study analyzes various samples of particles whose length ranges from approximately 10 to 1000 μm. The correlation we demonstrate between LD and SIA can be used to improve validation of LD methods based on SIA data for a variety of pharmaceutical powders all with a different rectangular particle size and shape.
dc.format.extent56 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec560101
dc.identifier.issn0032-5910
dc.identifier.urihttps://hdl.handle.net/2445/43556
dc.language.isoeng
dc.publisherElsevier B.V.
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1016/j.powtec.2007.11.017
dc.relation.ispartofPowder Technology, 2008, vol. 186, num. 2, p. 154-167
dc.relation.urihttp://dx.doi.org/10.1016/j.powtec.2007.11.017
dc.rights(c) Elsevier B.V., 2008
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física Aplicada)
dc.subject.classificationÒptica de Fourier
dc.subject.classificationElectromagnetisme
dc.subject.classificationPartícules (Matèria)
dc.subject.classificationDifracció
dc.subject.classificationLàsers
dc.subject.otherFourier optics
dc.subject.otherElectromagnetism
dc.subject.otherParticles
dc.subject.otherDiffraction
dc.subject.otherLasers
dc.titleParticle shape and orientation in laser diffraction and static image analysis size distribution analysis of micrometer sized rectangular particles
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
560101.pdf
Mida:
2.53 MB
Format:
Adobe Portable Document Format