Integrated Strategy toward Self-Powering and Selectivity Tuning of Semiconductor Gas Sensors

dc.contributor.authorGad, Alaaeldin
dc.contributor.authorHoffmann, Martin W. G.
dc.contributor.authorCasals Guillén, Olga
dc.contributor.authorMayrhofer, Leonhard
dc.contributor.authorFábrega, Cristian
dc.contributor.authorCaccamo, Lorenzo
dc.contributor.authorHernández Ramírez, Francisco
dc.contributor.authorMohajerani, Matin S.
dc.contributor.authorMoseler, Michael
dc.contributor.authorShen, Hao
dc.contributor.authorWaag, Andreas
dc.contributor.authorPrades García, Juan Daniel
dc.date.accessioned2016-10-07T11:21:15Z
dc.date.available2017-09-29T22:01:29Z
dc.date.issued2016-09-29
dc.date.updated2016-10-07T11:21:20Z
dc.description.abstractInorganic conductometric gas sensors struggle to overcome limitations in high power consumption and poor selectivi-ty. Herein, recent advances in developing self-powered gas sensors with tunable selectivity are introduced. Alternative general approaches for powering gas sensors were realized via proper integration of complementary functionalities (namely; powering and sensing) in a singular heterostructure. These solar light driven gas sensors operating at room temperature without applying any additional external powering sources are comparatively discussed. The TYPE-1 gas sensor based on integration of pure inorganic interfaces (e.g. CdS/n-ZnO/p-Si) is capable of delivering a self-sustained sensing response, while it shows a non-selective interaction towards oxidizing and reducing gases. The structural and the optical merits of TYPE-1 sensor are investigated giving more insights into the role of light activation on the modu-lation of the self-powered sensing response. In the TYPE-2 sensor, the selectivity of inorganic materials is tailored through surface functionalization with self-assembled organic monolayers (SAMs). Such hybrid interfaces (e.g. SAMs/ZnO/p-Si) have specific surface interactions with target gases compared to the non-specific oxidation-reduction interactions governing the sensing mechanism of simple inorganic sensors. The theoretical modeling using density functional theory (DFT) has been used to simulate the sensing behavior of inorganic/organic/gas interfaces, revealing that the alignment of organic/gas frontier molecular orbitals with respect to the inorganic Fermi level is the key factor for tuning selectivity. These platforms open new avenues for developing advanced energy-neutral gas sensing devices and concepts.
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec664220
dc.identifier.issn2379-3694
dc.identifier.urihttps://hdl.handle.net/2445/102442
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relationinfo:eu-repo/semantics/altIdentifier/doi/10.1021/acssensors.6b00508
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1021/acssensors.6b00508
dc.relation.ispartofACS Sensors, 2016, vol.1, num.10, p. 1256–1264
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/FP7/336917/EU//BETTERSENSE
dc.relation.urihttp://dx.doi.org/10.1021/acssensors.6b00508
dc.rights(c) American Chemical Society , 2016
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)
dc.subject.classificationDetectors de gasos
dc.subject.classificationNanoestructures
dc.subject.classificationSemiconductors
dc.subject.otherGas detectors
dc.subject.otherNanostructures
dc.subject.otherSemiconductors
dc.titleIntegrated Strategy toward Self-Powering and Selectivity Tuning of Semiconductor Gas Sensors
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
664220.pdf
Mida:
1.11 MB
Format:
Adobe Portable Document Format