Carleson Measures and Toeplitz operators for weighted Bergman spaces on the unit ball

dc.contributor.authorPau, Jordi
dc.contributor.authorZhao, Ruhan
dc.date.accessioned2016-04-01T07:23:15Z
dc.date.available2016-12-31T23:01:19Z
dc.date.issued2015
dc.date.updated2016-04-01T07:23:20Z
dc.description.abstractSome new characterizations on Carleson measures for weighted Bergman spaces on the unit ball involving product of functions are obtained. For these we characterize bounded and compact Toeplitz operators between weighted Bergman spaces. The above results are applied to characterize bounded and compact extended Cesàro operators and pointwise multiplication operators. The results are new even in the case of the unit disk.
dc.format.extent38 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec658903
dc.identifier.issn0026-2285
dc.identifier.urihttps://hdl.handle.net/2445/96821
dc.language.isoeng
dc.publisherUniversity of Michigan Press
dc.relation.isformatofReproducció del document publicat a: http://projecteuclid.org/euclid.mmj/1447878031
dc.relation.ispartofMichigan Mathematical Journal, 2015, vol. 64, num. 4, p. 759-796
dc.rights(c) Pau, Jordi et al., 2015
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationFuncions de diverses variables complexes
dc.subject.classificationEspais analítics
dc.subject.classificationFuncions holomorfes
dc.subject.classificationTeoria d'operadors
dc.subject.classificationOperadors lineals
dc.subject.otherFunctions of several complex variables
dc.subject.otherAnalytic spaces
dc.subject.otherHolomorphic functions
dc.subject.otherOperator theory
dc.subject.otherLinear operators
dc.titleCarleson Measures and Toeplitz operators for weighted Bergman spaces on the unit ball
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
658903.pdf
Mida:
366.31 KB
Format:
Adobe Portable Document Format