Beurling-Landau densities of weighted Fekete sets and correlation kernel estimates

dc.contributor.authorAmeur, Yacin
dc.contributor.authorOrtega Cerdà, Joaquim
dc.date.accessioned2013-04-22T08:52:37Z
dc.date.available2013-04-22T08:52:37Z
dc.date.issued2012-10-01
dc.date.updated2013-04-22T08:52:37Z
dc.description.abstractLet $Q$ be a suitable real function on $C$. An $n$-Fekete set corresponding to $Q$ is a subset ${Z_{n1}},\dotsb, Z_{nn}}$ of $C$ which maximizes the expression $\Pi^n_i_{<j}|Z_{ni} - Z_{nj}|^2 e^-^{n(Q(Z_n_1)+\dotsb+Q(Z_{nn}))}$. It is well known that, under reasonable conditions on $Q$, there is a compact set $S$ known as the 'droplet' such that the measures $\mu_n n^{-1} (\delta_{zn1}+\dots+\delta_{znn})$ converges to the equilibrium measure $\Delta Q.1 _S$d$A$ as $n \rightarrow \infty$. In this note we prove that Fekete sets are, in a sense, maximally spread out with respect to the equilibrium measure. In general, our results apply only to a part of the Fekete set, which is at a certain distance away from the boundary of the droplet. However, for the potential $Q=|Z|^2$ we obtain results which hold globally, and we conjecture that such global results are true for a wide range of potentials.
dc.format.extent37 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec615425
dc.identifier.issn0022-1236
dc.identifier.urihttps://hdl.handle.net/2445/34752
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofVersió postprint del document publicat a: http://dx.doi.org/10.1016/j.jfa.2012.06.011
dc.relation.ispartofJournal of Functional Analysis, 2012, vol. 263, num. 7, p. 1825-1861
dc.relation.urihttp://dx.doi.org/10.1016/j.jfa.2012.06.011
dc.rights(c) Elsevier, 2012
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationTeoria del potencial (Matemàtica)
dc.subject.otherPotential theory (Mathematics)
dc.titleBeurling-Landau densities of weighted Fekete sets and correlation kernel estimates
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
615425.pdf
Mida:
252.26 KB
Format:
Adobe Portable Document Format