An $h$-principle for embeddings transverse to a contact structure

dc.contributor.authorCardona Aguilar, Robert
dc.contributor.authorPresas Mata, Francisco
dc.date.accessioned2025-03-04T12:25:38Z
dc.date.available2025-03-10T06:10:12Z
dc.date.issued2024-03-11
dc.date.updated2025-03-04T12:25:38Z
dc.description.abstractGiven a class of embeddings into a contact or a symplectic manifold, we give a sufficient condition, that we call isocontact or isosymplectic realization, for this class to satisfy a general $h$-principle. The flexibility follows from the $h$-principles for isocontact and isosymplectic embeddings, it provides a framework for classical results, and we give two new applications. Our main result is that embeddings transverse to a contact structure satisfy a full $h$-principle in two cases: if the complement of the embedding is overtwisted, or when the intersection of the image of the formal derivative with the contact structure is strictly contained in a proper symplectic subbundle. We illustrate the general framework on symplectic manifolds by studying the universality of Hamiltonian dynamics on regular level sets via a class of embeddings.
dc.format.extent33 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec745905
dc.identifier.issn1753-8416
dc.identifier.urihttps://hdl.handle.net/2445/219434
dc.language.isoeng
dc.publisherWiley
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1112/topo.12326
dc.relation.ispartofJournal Of Topology, 2024, vol. 17, num.1
dc.relation.urihttps://doi.org/10.1112/topo.12326
dc.rights(c) London Mathematical Society, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationVarietats topològiques
dc.subject.classificationTopologia diferencial
dc.subject.otherTopological manifolds
dc.subject.otherDifferential topology
dc.titleAn $h$-principle for embeddings transverse to a contact structure
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
852358.pdf
Mida:
320.93 KB
Format:
Adobe Portable Document Format