Machine Learning for Accelerated Cosmological Inference Beyond Flat ΛCDM

dc.contributor.advisorGómez Valent, Adrià
dc.contributor.authorRamirez Nethersole, Rafael Raul
dc.date.accessioned2026-02-17T14:45:52Z
dc.date.available2026-02-17T14:45:52Z
dc.date.issued2026-01
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2026, Tutor: Tutor: Adrià Gómez Valent
dc.description.abstractWe review the efficacy of Neural Networks (NN) for emulating cosmological observables (angular acoustic scale θ∗ and binned angular power spectra Db of the CMB temperature anisotropies across ℓ ∈ [30, 400]), and apply our emulator-based inference framework to the nonflat ΛCDM model, in the range ΩK ∈ [−0.2, 0.2]. We achieve speed up actor computation times beyond 104 with respect to standard boltzamn solvers, while maintaining all NN prediction error values below 0.7% relative to current experimental uncertainties, enabling for computationally feasible parameter inference pipelines. We also provide constraints on the curvature density parameter ΩK and other ΛCDM parameters using the NN developed in this work and the temperature maps from Planck 2018 SMICA data. A marginal posterior using our NN model gives curvature density ΩK = 0.001+0.030 −0.070, consistent with a flat Universe.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/226970
dc.language.isoeng
dc.rightscc-by-nc-nd (c) Ramírez, 2026
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subject.classificationCosmologiacat
dc.subject.classificationCurvaturacat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherCosmologyeng
dc.subject.otherCurvatureeng
dc.subject.otherBachelor's theseseng
dc.titleMachine Learning for Accelerated Cosmological Inference Beyond Flat ΛCDM
dc.typeinfo:eu-repo/semantics/bachelorThesis

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
TFG_Ramirez_Nethersole_RafaelRaul.pdf
Mida:
3.74 MB
Format:
Adobe Portable Document Format