DNAffinity: a machine-learning approach to predict DNA binding affinities of transcription factors

dc.contributor.authorBarissi, Sandro
dc.contributor.authorSala Huerta, Alba
dc.contributor.authorWieczór, Miłosz
dc.contributor.authorBattistini, Federica
dc.contributor.authorOrozco López, Modesto
dc.date.accessioned2022-10-13T14:49:52Z
dc.date.available2022-10-13T14:49:52Z
dc.date.issued2022-08-26
dc.date.updated2022-10-13T14:49:52Z
dc.description.abstractWe present a physics-based machine learning approach to predict in vitro transcription factor binding affinities from structural and mechanical DNA properties directly derived from atomistic molecular dynamics simulations. The method is able to predict affinities obtained with techniques as different as uPBM, gcPBM and HT-SELEX with an excellent performance, much better than existing algorithms. Due to its nature, the method can be extended to epigenetic variants, mismatches, mutations, or any non-coding nucleobases. When complemented with chromatin structure information, our in vitro trained method provides also good estimates of in vivo binding sites in yeast.
dc.format.extent10 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec724629
dc.identifier.issn0305-1048
dc.identifier.urihttps://hdl.handle.net/2445/189850
dc.language.isoeng
dc.publisherOxford University Press
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1093/nar/gkac708
dc.relation.ispartofNucleic Acids Research, 2022, vol. 50, num. 16, p. 9105-9114
dc.relation.urihttps://doi.org/10.1093/nar/gkac708
dc.rightscc-by-nc (c) Barissi, Sandro et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc/4.0/
dc.sourceArticles publicats en revistes (Bioquímica i Biomedicina Molecular)
dc.subject.classificationADN
dc.subject.classificationGenòmica
dc.subject.classificationBiologia computacional
dc.subject.otherDNA
dc.subject.otherGenomics
dc.subject.otherComputational biology
dc.titleDNAffinity: a machine-learning approach to predict DNA binding affinities of transcription factors
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
724629.pdf
Mida:
1.82 MB
Format:
Adobe Portable Document Format