Carregant...
Fitxers
Tipus de document
ArticleVersió
Versió acceptadaData de publicació
Tots els drets reservats
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/192675
Effective bounds for the measure of rotations
Títol de la revista
Director/Tutor
ISSN de la revista
Títol del volum
Recurs relacionat
Resum
A fundamental question in dynamical systems is to identify regions of phase/parameter space satisfying a given property (stability, linearization, etc). Given a family of analytic circle diffeomorphisms depending on a parameter, we obtain effective (almost optimal) lower bounds of the Lebesgue measure of the set of parameters that are conjugated to a rigid rotation. We estimate this measure using an a posteriori KAM scheme that relies on quantitative conditions that are checkable using computer-assistance. We carefully describe how the hypotheses in our theorems are reduced to a finite number of computations, and apply our methodology to the case of the Arnold family. Hence we show that obtaining non-asymptotic lower bounds for the applicability of KAM theorems is a feasible task provided one has an a posteriori theorem to characterize the problem. Finally, as a direct corollary, we produce explicit asymptotic estimates in the so called local reduction setting (à la Arnold) which are valid for a global set of rotations.
Citació
Citació
HARO, Àlex, LUQUE, Alejandro, FIGUERAS, Jordi-lluís. Effective bounds for the measure of rotations. _Nonlinearity_. 2019. Vol. 33, núm. 2, pàgs. 700-741. [consulta: 8 de gener de 2026]. ISSN: 0951-7715. [Disponible a: https://hdl.handle.net/2445/192675]