CoFe-Cu granular alloys: From noninteracting particles to magnetic percolation

dc.contributor.authorPuntes, Víctorcat
dc.contributor.authorBatlle Gelabert, Xaviercat
dc.contributor.authorLabarta, Amílcarcat
dc.date.accessioned2012-02-16T08:49:30Z
dc.date.available2012-02-16T08:49:30Z
dc.date.issued1999ca
dc.description.abstractCoFe–Cu granular films with ferromagnetic content ranging from 0.10 to 0.33 by volume were prepared by radio frequency sputtering. As-cast samples were rapidly annealed at various temperatures up to 750 °C to promote the segregation of CoFe particles within the metallic matrix. Magnetic and transport properties suggested that this family of samples may be classified into three groups: (i) below about 0.20 volume content of CoFe, all samples display the typical features of a granular solid constituted by a random distribution of nanometric CoFe particles within a Cu matrix, and the maximum magnetoresistance is about 20% at low temperature (giant magnetoresistance); (ii) for as-cast samples within 0.20 and 0.30 of volume concentration, magnetoresistance and magnetization display complex bimodal behavior and large metastable effects associated with the interparticle interactions, which stabilize a domain-like microstructure well below the volume percolation threshold (0.55), as already observed in CoFe–Ag(Cu) granular alloys. As a consequence of the large magnetic correlations, magnetoresistance is very low (1%–3%). Through annealing, the microstructure and therefore the transport properties evolve to those of a classical giant magnetoresistance system with large particles; and (iii) above about 0.30 of volume content (and still below the volume percolation threshold), as-cast samples display both anisotropic and giant magnetoresistance, as also observed in other granular alloys. Annealing leads to complete segregation and to the formation of large magnetic particles, which results in a transition from mixed behavior of both anisotropic and giant magnetoresistance (GMR) regimes to a giant magnetoresistance regime, with a maximum GMR of about 7%.
dc.format.extent8 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec137632
dc.identifier.issn0021-8979ca
dc.identifier.urihttps://hdl.handle.net/2445/22076
dc.language.isoengeng
dc.publisherAmerican Institute of Physics
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1063/1.369357
dc.relation.ispartofJournal of Applied Physics, 1999, vol. 85, núm. 10, p. 7328-7335
dc.relation.urihttp://dx.doi.org/10.1063/1.369357
dc.rights(c) American Institute of Physics, 1999
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física de la Matèria Condensada)
dc.subject.classificationNanoestructurescat
dc.subject.classificationMaterials magnèticscat
dc.subject.classificationMatèria condensadacat
dc.subject.classificationFerromagnetismecat
dc.subject.classificationMagnetismecat
dc.subject.classificationMagnetoresistènciacat
dc.subject.otherNanostructureseng
dc.subject.otherMagnetic materialseng
dc.subject.otherCondensed mattereng
dc.subject.otherFerromagnetismeng
dc.subject.otherMagnetismeng
dc.subject.otherMagnetoresistanceeng
dc.titleCoFe-Cu granular alloys: From noninteracting particles to magnetic percolationeng
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
137632.pdf
Mida:
437 KB
Format:
Adobe Portable Document Format