Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Tots els drets reservats

Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/142925

Periods of Modular GL2-type Abelian Varieties and p-adic Integration

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

Let F be a number field and an integral ideal. Let f be a modular newform over F of level with rational Fourier coefficients. Under certain additional conditions, Guitart and colleagues [Guitart et al. 16[Guitart et al. 16] X. Guitart, M. Masdeu, and M. Haluk Şengün. "Uniformization of Modular Elliptic Curves via p-adic Periods." J. Algebra 445 (2016), 458-502. MR 3418066 [Crossref], [Web of Science ®] , [Google Scholar] ] constructed a p-adic lattice which is conjectured to be the Tate lattice of an elliptic curve Ef whose L-function equals that of f. The aim of this note is to generalize this construction when the Hecke eigenvalues of f generate a number field of degree d ⩾ 1, in which case the geometric object associated with f is expected to be, in general, an abelian variety Af of dimension d. We also provide numerical evidence supporting the conjectural construction in the case of abelian surfaces.

Citació

Citació

GUITART MORALES, Xavier, MASDEU, Marc. Periods of Modular GL2-type Abelian Varieties and p-adic Integration. _Experimental Mathematics_. 2017. Vol. 27, núm. 3, pàgs. 344-361. [consulta: 20 de gener de 2026]. ISSN: 1058-6458. [Disponible a: https://hdl.handle.net/2445/142925]

Exportar metadades

JSON - METS

Compartir registre