In vivo computer-aided diagnosis of colorectal polyps using white light endoscopy

dc.contributor.authorGarcía-Rodríguez, Ana
dc.contributor.authorTudela, Yael
dc.contributor.authorCórdova, Henry
dc.contributor.authorCarballal, Sabela
dc.contributor.authorOrdás, Ingrid
dc.contributor.authorMoreira Ruiz, Leticia
dc.contributor.authorVaquero, Eva
dc.contributor.authorOrtiz Zúñiga, Oswaldo
dc.contributor.authorRivero, Liseth
dc.contributor.authorSánchez, F. Javier
dc.contributor.authorCuatrecasas Freixas, Miriam
dc.contributor.authorPellisé Urquiza, Maria
dc.contributor.authorBernal, Jorge
dc.contributor.authorFernández Esparrach, Glòria
dc.date.accessioned2023-07-26T11:24:43Z
dc.date.available2023-07-26T11:24:43Z
dc.date.issued2022-09-14
dc.date.updated2023-07-26T11:24:44Z
dc.description.abstractBackground and study aims Artificial intelligence is currently able to accurately predict the histology of colorectal polyps. However, systems developed to date use complex optical technologies and have not been tested in vivo. The objective of this study was to evaluate the efficacy of a new deep learning-based optical diagnosis system, ATENEA, in a real clinical setting using only high-definition white light endoscopy (WLE) and to compare its performance with endoscopists. Methods ATENEA was prospectively tested in real life on consecutive polyps detected in colorectal cancer screening colonoscopies at Hospital Clínic. No images were discarded, and only WLE was used. The in vivo ATENEA's prediction (adenoma vs non-adenoma) was compared with the prediction of four staff endoscopists without specific training in optical diagnosis for the study purposes. Endoscopists were blind to the ATENEA output. Histology was the gold standard. Results Ninety polyps (median size: 5 mm, range: 2-25) from 31 patients were included of which 69 (76.7 %) were adenomas. ATENEA correctly predicted the histology in 63 of 69 (91.3 %, 95 % CI: 82 %-97 %) adenomas and 12 of 21 (57.1 %, 95 % CI: 34 %-78 %) non-adenomas while endoscopists made correct predictions in 52 of 69 (75.4 %, 95 % CI: 60 %-85 %) and 20 of 21 (95.2 %, 95 % CI: 76 %-100 %), respectively. The global accuracy was 83.3 % (95 % CI: 74%-90 %) and 80 % (95 % CI: 70 %-88 %) for ATENEA and endoscopists, respectively. Conclusion ATENEA can accurately be used for in vivo characterization of colorectal polyps, enabling the endoscopist to make direct decisions. ATENEA showed a global accuracy similar to that of endoscopists despite an unsatisfactory performance for non-adenomatous lesions.
dc.format.extent7 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec729721
dc.identifier.idimarina9329895
dc.identifier.issn2364-3722
dc.identifier.pmid36118638
dc.identifier.urihttps://hdl.handle.net/2445/201189
dc.language.isoeng
dc.publisherGeorg Thieme Verlag
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1055/a-1881-3178
dc.relation.ispartofEndoscopy International Open, 2022, vol. 10, num. 9, p. E1201-E1207
dc.relation.urihttps://doi.org/10.1055/a-1881-3178
dc.rightscc-by-nc-nd (c) García-Rodríguez, Ana, et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourceArticles publicats en revistes (Fonaments Clínics)
dc.subject.classificationPòlips (Patologia)
dc.subject.classificationCàncer colorectal
dc.subject.classificationEndoscòpia
dc.subject.classificationIntel·ligència artificial en medicina
dc.subject.classificationHistologia
dc.subject.otherPolyps (Pathology)
dc.subject.otherColorectal cancer
dc.subject.otherEndoscopy
dc.subject.otherMedical artificial intelligence
dc.subject.otherHistology
dc.titleIn vivo computer-aided diagnosis of colorectal polyps using white light endoscopy
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
729721.pdf
Mida:
759.38 KB
Format:
Adobe Portable Document Format