Carregant...
Miniatura

Tipus de document

Article

Versió

Versió acceptada

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Elsevier, 2016
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/193448

Uniformization of modular elliptic curves via $p$-adic periods

Títol de la revista

Director/Tutor

ISSN de la revista

Títol del volum

Resum

The Langlands Programme predicts that a weight 2 newform $f$ over a number field $K$ with integer Hecke eigenvalues generally should have an associated elliptic curve $E_f$ over $K$. In [GMS14], we associated, building on works of Darmon [Dar01] and Greenberg [Gre09], a $p$-adic lattice $\Lambda$ to $f$, under certain hypothesis, and implicitly conjectured that $\Lambda$ is commensurable with the $p$-adic Tate lattice of $E_f$. In this paper, we present this conjecture in detail and discuss how it can be used to compute, directly from $f$, a Weierstrass equation for the conjectural $E_f$. We develop algorithms to this end and implement them in order to carry out extensive systematic computations in which we compute Weierstrass equations of hundreds of elliptic curves, some with huge heights, over dozens of number fields. The data we obtain gives extensive support for the conjecture and furthermore demonstrate that the conjecture provides an efficient tool to building databases of elliptic curves over number fields.

Citació

Citació

GUITART MORALES, Xavier, MASDEU, Marc, ŞENGÜN, Mehmet haluk. Uniformization of modular elliptic curves via $p$-adic periods. _Journal of Algebra_. 2016. Vol. 445, núm. 458-502. [consulta: 21 de gener de 2026]. ISSN: 0021-8693. [Disponible a: https://hdl.handle.net/2445/193448]

Exportar metadades

JSON - METS

Compartir registre