A fully automated hot-wall multiplasma-monochamber reactor for thin film deposition

dc.contributor.authorRoca i Cabarrocas, P. (Pere)cat
dc.contributor.authorChevrier, J. B.cat
dc.contributor.authorHuc, J.cat
dc.contributor.authorLloret, A.cat
dc.contributor.authorParey, J. Y.cat
dc.contributor.authorSchmitt, J. P. M.cat
dc.date.accessioned2012-05-08T07:52:26Z
dc.date.available2012-05-08T07:52:26Z
dc.date.issued1997-07
dc.date.updated2012-05-04T10:29:12Z
dc.description.abstractWe present a study on the development and the evaluation of a fully automated radio-frequency glow discharge system devoted to the deposition of amorphous thin film semiconductors and insulators. The following aspects were carefully addressed in the design of the reactor: (1) cross contamination by dopants and unstable gases, (2) capability of a fully automated operation, (3) precise control of the discharge parameters, particularly the substrate temperature, and (4) high chemical purity. The new reactor, named ARCAM, is a multiplasma-monochamber system consisting of three separated plasma chambers located inside the same isothermal vacuum vessel. Thus, the system benefits from the advantages of multichamber systems but keeps the simplicity and low cost of monochamber systems. The evaluation of the reactor performances showed that the oven-like structure combined with a differential dynamic pumping provides a high chemical purity in the deposition chamber. Moreover, the studies of the effects associated with the plasma recycling of material from the walls and of the thermal decomposition of diborane showed that the multiplasma-monochamber design is efficient for the production of abrupt interfaces in hydrogenated amorphous silicon (a-Si:H) based devices. Also, special attention was paid to the optimization of plasma conditions for the deposition of low density of states a-Si:H. Hence, we also present the results concerning the effects of the geometry, the substrate temperature, the radio frequency power and the silane pressure on the properties of the a-Si:H films. In particular, we found that a low density of states a-Si:H can be deposited at a wide range of substrate temperatures (100°C<Ts<300°C).eng
dc.format.extent11 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec507712
dc.identifier.issn0734-2101
dc.identifier.urihttps://hdl.handle.net/2445/25054
dc.language.isoengeng
dc.publisherAmerican Institute of Physics
dc.relation.isformatofReproducció del document publicat a: http://dx.doi.org/10.1116/1.577318
dc.relation.ispartofJournal of Vacuum Science Technology A-Vacuum Surfaces and Films, 1991, vol. 9, núm. 4, p. 2331
dc.relation.urihttp://dx.doi.org/10.1116/1.577318
dc.rights(c) American Institute of Physics, 1991
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.sourceArticles publicats en revistes (Física Aplicada)
dc.subject.classificationPel·lícules finescat
dc.subject.classificationSemiconductors amorfscat
dc.subject.classificationRadiofreqüènciacat
dc.subject.classificationCèl·lules solarscat
dc.subject.otherThin filmseng
dc.subject.otherAmorphous semiconductorseng
dc.subject.otherRadio frequencyeng
dc.subject.otherSolar cellseng
dc.titleA fully automated hot-wall multiplasma-monochamber reactor for thin film depositioneng
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
507712.pdf
Mida:
950.09 KB
Format:
Adobe Portable Document Format