Point evaluation in Paley-Wiener spaces

dc.contributor.authorFredrik Brevig, Ole
dc.contributor.authorChirre, Andrés
dc.contributor.authorOrtega Cerdà, Joaquim
dc.contributor.authorSeip, Kristian
dc.date.accessioned2024-10-10T10:39:49Z
dc.date.available2024-10-10T10:39:49Z
dc.date.issued2023-09-12
dc.date.updated2024-10-10T10:39:50Z
dc.description.abstractWe study the norm of point evaluation at the origin in the PaleyWiener space $P W^p$ for $0<p<\infty$, i.e., we search for the smallest positive constant $C$, called $\mathscr{C}_p$, such that the inequality $|f(0)|^p \leq C\|f\|_p^p$ holds for every $f$ in $P W^p$. We present evidence and prove several results supporting the following monotonicity conjecture: The function $p \mapsto \mathscr{C}_p / p$ is strictly decreasing on the half-line $(0, \infty)$. Our main result implies that $\mathscr{C}_p<p / 2$ for $2<p<\infty$, and we verify numerically that $\mathscr{C}_p>p / 2$ for $1 \leq p<2$. We also estimate the asymptotic behavior of $\mathscr{C}_p$ as $p \rightarrow \infty$ and as $p \rightarrow 0^{+}$. Our approach is based on expressing $\mathscr{C}_p$ as the solution of an extremal problem. Extremal functions exist for all $0<p<\infty$; they are real entire functions with only real zeros, and the extremal functions are known to be unique for $1 \leq p<\infty$. Following work of Hörmander and Bernhardsson, we rely on certain orthogonality relations associated with the zeros of extremal functions, along with certain integral formulas representing respectively extremal functions and general functions at the origin. We also use precise numerical estimates for the largest eigenvalue of the Landau-Pollak-Slepian operator of time-frequency concentration. A number of qualitative and quantitative results on the distribution of the zeros of extremal functions are established. In the range $1<p<\infty$, the orthogonality relations associated with the zeros of the extremal function are linked to a de Branges space. We state a number of conjectures and further open problems pertaining to $\mathscr{C}_p$ and the extremal functions.
dc.format.extent76 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec750207
dc.identifier.issn0021-7670
dc.identifier.urihttps://hdl.handle.net/2445/215652
dc.language.isoeng
dc.publisherSpringer
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/s11854-024-0338-z
dc.relation.ispartofJournal d'Analyse Mathematique, 2023, vol. 153, p. 595-670
dc.relation.urihttps://doi.org/10.1007/s11854-024-0338-z
dc.rightscc by (c) Ole Fredrik Brevig et al., 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Matemàtiques i Informàtica)
dc.subject.classificationAnàlisi harmònica
dc.subject.classificationEspais funcionals
dc.subject.otherHarmonic analysis
dc.subject.otherFunction spaces
dc.titlePoint evaluation in Paley-Wiener spaces
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
865950.pdf
Mida:
731.96 KB
Format:
Adobe Portable Document Format