El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 
Carregant...
Miniatura

Tipus de document

Tesi

Versió

Versió publicada

Data de publicació

Llicència de publicació

cc by (c) Circelli, Michele, 2024
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/217201

Congested Optimal Transport in the Heisenberg Group

Títol de la revista

ISSN de la revista

Títol del volum

Resum

In this thesis we adapted the problem of continuous congested optimal transport to the Heisenberg group, equipped with a sub-Riemannian metric: we restricted the set of admissible paths to the horizontal curves. We obtained the existence of equilibrium configurations, known as Wardrop Equilibria, through the minimization of a convex functional, over a suitable set of measures on the horizontal curves. Moreover, such equilibria induce trans­ port plans that solve a Monge-Kantorovic problem associated with a cost, depending on the congestion itself, which we rigorously defined. We also proved the equivalence between this problem and a minimization problem defined over the set of p-summable horizontal vector fields with prescribed divergence. We showed that this new problem admits a dual formulation as a classical minimization problem of Calculus of Variations. In addition, even the Monge-Kantorovich problem associated with the sub-Riemannian distance turns out to be equivalent to a minimization problem over measures on horizontal curves. Passing through the notion of horizontal transport density, we proved that the Monge-Kantorovich problem can also be formulated as a minimization problem with a divergence-type constraint. Its dual formulation is the well-known Kantorovich duality theorem. In the end, we treated the continuous congested optimal transport problem with orthotropic cost function: we proved the Lipschitz regularity for solutions to a pseudo q-Laplacian-type equation arising from it.

Descripció

Citació

Citació

CIRCELLI, Michele. Congested Optimal Transport in the Heisenberg Group. [consulta: 30 de novembre de 2025]. [Disponible a: https://hdl.handle.net/2445/217201]

Exportar metadades

JSON - METS

Compartir registre