El Dipòsit Digital ha actualitzat el programari. Contacteu amb dipositdigital@ub.edu per informar de qualsevol incidència.

 

Auxiliary polynomials for transcendence results

dc.contributor.advisorSombra, Martín
dc.contributor.authorValcarce Dalmau, Eduard
dc.date.accessioned2025-01-24T07:53:18Z
dc.date.available2025-01-24T07:53:18Z
dc.date.issued2024-09-02
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2023-2024. Director: Martín Sombraca
dc.description.abstractThe main goal of this work is to prove several transcendence results using auxiliary functions, and in doing so showcase their effectiveness in various contexts. The main theorems covered will be Hermite-Lindemann, Gelfond-Schneider, Schneider-Lang, and Baker’s theorem. We will employ two different proof strategies with auxiliary polynomials: two similar ones for Hermite-Lindemann and Schneider-Lang, and a noticeably different one for Baker’s theorem. Gelfond-Schneider will come as a corollary to Schneider-Lang. We will ease into these theorems however, by first delving into the preliminary results and background knowledge requiered to understand their proofs. This includes but is not limited to derivations over number fields, valuation theory and height functions, and complex analysis. Furthermore, we will take a detour into ellipitic functions after proving the Schneider-Lang theorem due to independent interest, and to present a few applications of the Schneider-Lang theorem, as it is the most general one we will present.ca
dc.format.extent68 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/217919
dc.language.isoengca
dc.rightscc by-nc-nd (c) Eduard Valcarce Dalmau, 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationTeoria de nombrescat
dc.subject.classificationNombres transcendentscat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.classificationCorbes el·líptiquescat
dc.subject.otherNumber theoryeng
dc.subject.otherTranscendental numberseng
dc.subject.otherMaster's thesiseng
dc.subject.otherElliptic curveseng
dc.titleAuxiliary polynomials for transcendence resultsca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
tfm_valcarce_dalmau_eduard.pdf
Mida:
774.12 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria