Machine Learning methods to estimate odour intensity

dc.contributor.advisorMarco Colás, Santiago
dc.contributor.authorCasanovas Rodríguez, Ivan
dc.date.accessioned2023-07-20T08:22:23Z
dc.date.available2023-07-20T08:22:23Z
dc.date.issued2023-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2023, Tutor: Santiago Marco Colásca
dc.description.abstractOdour is a human perception whose relationship with chemical composition is unknown. Contrary to the olfactometric measurement techniques, senso-instrumental methods provide real-time odour monitoring. The study presents a drone equipped with an electronic nose that generates dynamic sensor signals for the classification and quantification of odours in wastewater treatment plants. By calibrating predictive models with Machine Learning algorithms, odour/nonodour samples are classified with 93% accuracy, and odour concentration is predicted 95% limits of agreement within a factor of four, in comparison with dynamic olfactometry measurementsca
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/200943
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Casanovas, 2023
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationOlorscat
dc.subject.classificationAprenentatge automàticcat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherOdorseng
dc.subject.otherMachine learningeng
dc.subject.otherBachelor's theseseng
dc.titleMachine Learning methods to estimate odour intensityeng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
CASANOVAS RODRIGUEZ IVAN_7934179.pdf
Mida:
2.25 MB
Format:
Adobe Portable Document Format
Descripció: