Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc by-nc-nd (c) Fernando Conde Montero, 2022
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/198325

Modern portfolio optimization

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

[en] The objective of this thesis is to survey some of the many models studied on modern portfolio theory, one of the main branches of quantitative finance. The first part of this work is dedicated to covering some of the main results on convex optimization with special emphasis on the Lagrangian and the Karush-Kuhn-Tucker optimality conditions. The second and third chapter are dedicated to two of the first and most important optimization models: the Markowitz model and the Capital Asset Pricing Model (CAPM). These two models are of paramount importance as they are the building blocks upon which later developments stand. However these models are quite static in the sense that they only allow for one period of time so, in the fourth chapter we introduce two multi-period models. For simplicity we will only contemplate the case with one risk-free asset and one risky asset, although the ideas there exposed allow the incorporation of many risky assets. So far, all models assumed that there was only one price at which assets are sold and bought. In the final chapter we will extend the notion of optimal portfolio to the context of financial market with two prices (the bid and ask price).

Descripció

Treballs finals del Màster en Matemàtica Avançada, Facultat de Matemàtiques, Universitat de Barcelona: Curs: 2021-2022. Director: José Manuel Corcuera Valverde

Citació

Citació

CONDE MONTERO, Fernando. Modern portfolio optimization. [consulta: 24 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/198325]

Exportar metadades

JSON - METS

Compartir registre