Exploring functional conservation in silico: a new machine learning approach to RNA-editing

dc.contributor.authorZawisza-Álvarez, Michał 
dc.contributor.authorPeñuela Melero, Jesús
dc.contributor.authorVegas Lozano, Esteban
dc.contributor.authorReverter Comes, Ferran
dc.contributor.authorGarcia Fernández, Jordi
dc.contributor.authorHerrera Úbeda, Carlos
dc.date.accessioned2025-01-20T07:51:40Z
dc.date.available2025-01-20T07:51:40Z
dc.date.issued2024-07-09
dc.date.updated2025-01-20T07:51:40Z
dc.description.abstractAround 50 years ago, molecular biology opened the path to understand changes in forms, adaptations, complexity, or the basis of human diseases through myriads of reports on gene birth, gene duplication, gene expression regulation, and splicing regulation, among other relevant mechanisms behind gene function. Here, with the advent of big data and artificial intelligence (AI), we focus on an elusive and intriguing mechanism of gene function regulation, RNA editing, in which a single nucleotide from an RNA molecule is changed, with a remarkable impact in the increase of the complexity of the transcriptome and proteome. We present a new generation approach to assess the functional conservation of the RNA-editing targeting mechanism using two AI learning algorithms, random forest (RF) and bidirectional long short-term memory (biLSTM) neural networks with an attention layer. These algorithms, combined with RNA-editing data coming from databases and variant calling from same-individual RNA and DNA-seq experiments from different species, allowed us to predict RNA-editing events using both primary sequence and secondary structure. Then, we devised a method for assessing conservation or divergence in the molecular mechanisms of editing completely in silico: the cross-testing analysis. This novel method not only helps to understand the conservation of the editing mechanism through evolution but could set the basis for achieving a better understanding of the adenosine-targeting mechanism in other fields.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec750319
dc.identifier.issn1467-5463
dc.identifier.urihttps://hdl.handle.net/2445/217652
dc.language.isoeng
dc.publisherH. Stewart Publications
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1093/bib/bbae332
dc.relation.ispartofBriefings In Bioinformatics, 2024, vol. 25, num.4, p. 1-12
dc.relation.urihttps://doi.org/10.1093/bib/bbae332
dc.rightscc-by (c) Zawisza-Álvarez, M et al., 2024
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Genètica, Microbiologia i Estadística)
dc.subject.classificationAprenentatge automàtic
dc.subject.classificationEvolució (Biologia)
dc.subject.classificationRNA
dc.subject.otherMachine learning
dc.subject.otherEvolution (Biology)
dc.subject.otherRNA
dc.titleExploring functional conservation in silico: a new machine learning approach to RNA-editing
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
866353.pdf
Mida:
1.57 MB
Format:
Adobe Portable Document Format