El CRAI romandrà tancat del 24 de desembre de 2025 al 6 de gener de 2026. La validació de documents es reprendrà a partir del 7 de gener de 2026.
El CRAI permanecerá cerrado del 24 de diciembre de 2025 al 6 de enero de 2026. La validación de documentos se reanudará a partir del 7 de enero de 2026.
From 2025-12-24 to 2026-01-06, the CRAI remain closed and the documents will be validated from 2026-01-07.
 

Viscoelastic characterization of seven laminated glass interlayer materials from static tests

dc.contributor.authorCentelles, Xavier
dc.contributor.authorFernández, Pelayo
dc.contributor.authorLamela-Rey, María Jesús
dc.contributor.authorFernández Renna, Ana Inés
dc.contributor.authorSalgado Pizarro, Rebeca
dc.contributor.authorCastro, J. Ramón
dc.contributor.authorCabeza, Luisa F.
dc.date.accessioned2021-03-08T11:09:31Z
dc.date.available2023-02-05T06:10:21Z
dc.date.issued2021-02-05
dc.date.updated2021-03-08T11:09:31Z
dc.description.abstractThe mechanical behaviour of laminated glass is strongly affected by the polymeric interlayer placed between glass layers. In general, this interlayer is a viscoelastic material, and therefore it may experience creep and stress relaxation when subjected for an extended period to a constant stress or strain respectively. In this study, seven different commercial interlayer materials (EVALAM, EVASAFE, PVB BG-R20, Saflex DG-41, PVB ES, SentryGlas, and TPU) were evaluated with relaxation tests at different temperatures, in order to build the relaxation master curves through the time-temperature superposition principle. A generalized Maxwell model was chosen to describe the viscoelastic behaviour of the tested materials. This paper includes the coefficients of the Prony series that fit better the experimental results. This paper has two main goals. First, to present the Prony coefficients (ei and si), which can then be used to create numerical models that take into consideration the time and temperature-dependant behaviour of the interlayer. Second, to provide the two components of the complex modulus (E*(x)) of each material, the storage modulus (E'(x)) and the loss modulus (E''(x)), which can be obtained from the relaxation modulus (E(t)) by using analytical interconversions.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec707745
dc.identifier.issn0950-0618
dc.identifier.urihttps://hdl.handle.net/2445/174647
dc.language.isoeng
dc.publisherElsevier
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.conbuildmat.2021.122503
dc.relation.ispartofConstruction and Building Materials, 2021, vol. 279, p. 122503
dc.relation.urihttps://doi.org/10.1016/j.conbuildmat.2021.122503
dc.rightscc-by-nc-nd (c) Elsevier, 2021
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)
dc.subject.classificationCompostos polimèrics
dc.subject.classificationPlaques de vidre
dc.subject.classificationViscoelasticitat
dc.subject.otherPolymeric composites
dc.subject.otherGlass plates
dc.subject.otherViscoelasticity
dc.titleViscoelastic characterization of seven laminated glass interlayer materials from static tests
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
707745.pdf
Mida:
664.24 KB
Format:
Adobe Portable Document Format