Understanding W doping in wurtzite ZnO
| dc.contributor.author | Viñes Solana, Francesc | |
| dc.contributor.author | Iglesias-Juez, Ana | |
| dc.contributor.author | Fernandez-Garcia, Marcos | |
| dc.contributor.author | Illas i Riera, Francesc | |
| dc.date.accessioned | 2020-06-16T11:10:27Z | |
| dc.date.available | 2020-06-16T11:10:27Z | |
| dc.date.issued | 2018-08-23 | |
| dc.date.updated | 2020-06-16T11:10:27Z | |
| dc.description.abstract | In the context of bandgap engineering of the ZnO photoactive material for solar harvesting applications via W doping, a number of a priori discrepant experimental observations in the literature concerning ZnO c axis expansion/contraction, bandgap red- or blue-shifting, the Zn-substitutional or interstitial nature of W atoms, or the W6+ charge compensation view with ZnO native defects are addressed by thorough density functional theory calculations on a series of bulk supercell models encompassing a large range of W contents. The present results reconcile the at first sight dissimilar observations by showing that interstitial W (Wi) is only energetically preferred over substitutional (WZn) at large large W doping concentrations; the WZn c lattice expansion can be compensated by a W triggered Zn-vacancy (VZn) c lattice contraction. The presence of WZn energetically fosters nearby VZn defects, and vice versa, up to a double VZn situation. The quantity of mono or divacancies explains the lattice contraction/expansion, and both limiting situations imply gap states which reduce the band gaps, but increase the energy gaps. Based on present results, the ZnO band gap red-shifting necessary for solar light triggered processes is achievable by W doping in Zn rich conditions. | |
| dc.format.extent | 8 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 696482 | |
| dc.identifier.issn | 1932-7447 | |
| dc.identifier.uri | https://hdl.handle.net/2445/165803 | |
| dc.language.iso | eng | |
| dc.publisher | American Chemical Society | |
| dc.relation.isformatof | Versió postprint del document publicat a: https://doi.org/10.1021/acs.jpcc.8b06881 | |
| dc.relation.ispartof | Journal of Physical Chemistry C, 2018, vol. 122, num. 33, p. 19082-19089 | |
| dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/676580/EU//NoMaD | |
| dc.relation.uri | https://doi.org/10.1021/acs.jpcc.8b06881 | |
| dc.rights | (c) American Chemical Society , 2018 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.source | Articles publicats en revistes (Ciència dels Materials i Química Física) | |
| dc.subject.classification | Ferromagnetisme | |
| dc.subject.classification | Teoria del funcional de densitat | |
| dc.subject.classification | Aliatges binaris | |
| dc.subject.other | Ferromagnetism | |
| dc.subject.other | Density functionals | |
| dc.subject.other | Binary systems (Metallurgy) | |
| dc.title | Understanding W doping in wurtzite ZnO | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/acceptedVersion |
Fitxers
Paquet original
1 - 1 de 1