Fermat’s last theorem: work of Kummer, Furtwängler and Terjanian

dc.contributor.advisorDieulefait, L. V. (Luis Victor)
dc.contributor.authorMoya Viñas, Adriana
dc.date.accessioned2019-02-27T09:30:17Z
dc.date.available2019-02-27T09:30:17Z
dc.date.issued2018-06-27
dc.descriptionTreballs finals del Màster en Matemàtica Avançada, Facultat de matemàtiques, Universitat de Barcelona, Any: 2018, Director: Luis Victor Dieulefaitca
dc.description.abstract[en] As it is well-known, Fermat’s Last Theorem states that the equation $x^{n} + y^{n} = z^{n}, yxz\neq 0$ has no integer solutions when the exponent n is greater or equal than 3. It was enunciated by Fermat around 1630 and stood unsolved for more than 350 years, until 1994 Andrew Wiles finally took that last step by proving the modularity conjecture for semistable elliptic curves. This thesis highlights the first steps taken in proving the theorem, before the use of elliptic curves and modularity. Our objective is to resume all these results and try to give a general point of view of what was known before the use of modern methods. Starting with elementary results, we move on to see Kummer’s proof for regular primes. Afterwards, we see how Furtwängler uses class field theory to work on Fermat’s problem, and give us more partial results of the theorem. Finally we study a generalization of Fermat’s last theorem for even exponent, due to Hellegouarch, using again the techniques of class field theory.ca
dc.format.extent50 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/129003
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Adriana Moya Viñas, 2018
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceMàster Oficial - Matemàtica Avançada
dc.subject.classificationDarrer teorema de Fermatcat
dc.subject.classificationCossos algebraicscat
dc.subject.classificationTreballs de fi de màstercat
dc.subject.classificationNombres primersca
dc.subject.classificationCorbes el·líptiquesca
dc.subject.classificationGeometria algebraica aritmèticaca
dc.subject.otherFermat's last theoremeng
dc.subject.otherAlgebraic fieldseng
dc.subject.otherMaster's theseseng
dc.subject.otherPrime numbersen
dc.subject.otherElliptic curvesen
dc.subject.otherArithmetical algebraic geometryen
dc.titleFermat’s last theorem: work of Kummer, Furtwängler and Terjanianca
dc.typeinfo:eu-repo/semantics/masterThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
memoria.pdf
Mida:
467.7 KB
Format:
Adobe Portable Document Format
Descripció:
Memòria