Structural completeness in many-valued logics with rational constants

dc.contributor.authorGispert Brasó, Joan
dc.contributor.authorHaniková, Zuzana
dc.contributor.authorMoraschini, Tommaso
dc.contributor.authorStronkowski, Michal
dc.date.accessioned2026-01-12T08:45:25Z
dc.date.available2026-01-12T08:45:25Z
dc.date.issued2022-08
dc.date.updated2026-01-12T08:45:25Z
dc.description.abstractThe logics $\mathbf{R} \mathbf{\L}, \mathbf{R} \mathbf{P}$, and $\mathbf{R G}$ have been obtained by expanding $\{L}$ukasiewicz logic $\mathbf{L}$, product logic $\mathbf{P}$, and Gödel-Dummett logic $\mathbf{G}$ with rational constants. We study the lattices of extensions and structural completeness of these three expansions, obtaining results that stand in contrast to the known situation in $\mathbf{} \mathbf{,} \mathbf{P}$, and $\mathbf{G}$. Namely, $\mathbf{R} \mathbf{L}$ is hereditarily structurally complete. $\mathbf{R} \mathbf{P}$ is algebraized by the variety of rational product algebras that we show to be $\mathcal{Q}$-universal. We provide a base of admissible rules in RP, show their decidability, and characterize passive structural completeness for extensions of $\mathbf{R P}$. Furthermore, structural completeness, hereditary structural completeness, and active structural completeness coincide for extensions of $\mathbf{R P}$, and this is also the case for extensions of RG, where in turn passive structural completeness is characterized by the equivalent algebraic semantics having the joint embedding property. For nontrivial axiomatic extensions of $\mathbf{R G}$ we provide a base of admissible rules. We leave the problem open whether the variety of rational Gödel algebras is $\mathcal{Q}$-universal.
dc.format.extent39 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec725336
dc.identifier.issn0029-4527
dc.identifier.urihttps://hdl.handle.net/2445/225269
dc.language.isoeng
dc.publisherUniversity of Notre Dame
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1215/00294527-2022-0021
dc.relation.ispartofNotre Dame Journal of Formal Logic, 2022, vol. 63, num.3, p. 261-299
dc.relation.urihttps://doi.org/10.1215/00294527-2022-0021
dc.rights(c) University of Notre Dame, 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.subject.classificationLògica multivalent
dc.subject.classificationLògica difusa
dc.subject.classificationVarietats algebraiques
dc.subject.otherMany-valued logic
dc.subject.otherFuzzy logic
dc.subject.otherAlgebraic varieties
dc.titleStructural completeness in many-valued logics with rational constants
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/acceptedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
252383.pdf
Mida:
412.1 KB
Format:
Adobe Portable Document Format