Combined burden and functional impact tests for cancer driver discovery using DriverPower

dc.contributor.authorShuai, Shimin
dc.contributor.authorPCAWG Drivers and Functional Interpretation Working Group
dc.contributor.authorGallinger, Steven
dc.contributor.authorStein, Lincoln D.
dc.contributor.authorPCAWG Consortium
dc.contributor.authorDeu-Pons, Jordi
dc.contributor.authorFrigola, Joan
dc.contributor.authorGonzález-Pérez, Abel
dc.contributor.authorMuiños, Ferran
dc.contributor.authorMularoni, Loris
dc.contributor.authorPich, Oriol
dc.contributor.authorReyes-Salazar, Iker
dc.contributor.authorRubio-Perez, Carlota
dc.contributor.authorSabarinathan, Radhakrishnan
dc.contributor.authorTamborero, David
dc.contributor.authorAymerich Gregorio, Marta
dc.contributor.authorCampo Güerri, Elias
dc.contributor.authorLópez Guillermo, Armando
dc.contributor.authorGelpi Buchaca, Josep Lluís
dc.contributor.authorRabionet Janssen, Raquel
dc.date.accessioned2024-02-19T15:10:37Z
dc.date.available2024-02-19T15:10:37Z
dc.date.issued2020-02-05
dc.date.updated2024-02-19T15:10:37Z
dc.description.abstractThe discovery of driver mutations is one of the key motivations for cancer genome sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we describe DriverPower, a software package that uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding sites within cancer whole genomes. Using a total of 1373 genomic features derived from public sources, DriverPower’s background mutation model explains up to 93% of the regional variance in the mutation rate across multiple tumour types. By incorporating functional impact scores, we are able to further increase the accuracy of driver discovery. Testing across a collection of 2583 cancer genomes from the PCAWG project, DriverPower identifies 217 coding and 95 non-coding driver candidates. Comparing to six published methods used by the PCAWG Drivers and Functional Interpretation Working Group, DriverPower has the highest F1 score for both coding and non-coding driver discovery. This demonstrates that DriverPower is an effective framework for computational driver discovery.
dc.format.extent12 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec728365
dc.identifier.issn2041-1723
dc.identifier.urihttps://hdl.handle.net/2445/207742
dc.language.isoeng
dc.publisherNature Publishing Group
dc.relation.isformatofReproducció del document publicat a: https://doi.org/https://doi.org/10.1038/s41467-019-13929-1
dc.relation.ispartofNature Communications, 2020, vol. 11, num.1, p. 1-12
dc.relation.urihttps://doi.org/https://doi.org/10.1038/s41467-019-13929-1
dc.rightscc-by (c) Shuai, S. et al., 2020
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.sourceArticles publicats en revistes (Fonaments Clínics)
dc.subject.classificationProcessament de dades
dc.subject.classificationCàncer
dc.subject.classificationGenòmica
dc.subject.otherData processing
dc.subject.otherCancer
dc.subject.otherGenomics
dc.titleCombined burden and functional impact tests for cancer driver discovery using DriverPower
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
255385.pdf
Mida:
663.31 KB
Format:
Adobe Portable Document Format