Combined burden and functional impact tests for cancer driver discovery using DriverPower
| dc.contributor.author | Shuai, Shimin | |
| dc.contributor.author | PCAWG Drivers and Functional Interpretation Working Group | |
| dc.contributor.author | Gallinger, Steven | |
| dc.contributor.author | Stein, Lincoln D. | |
| dc.contributor.author | PCAWG Consortium | |
| dc.contributor.author | Deu-Pons, Jordi | |
| dc.contributor.author | Frigola, Joan | |
| dc.contributor.author | González-Pérez, Abel | |
| dc.contributor.author | Muiños, Ferran | |
| dc.contributor.author | Mularoni, Loris | |
| dc.contributor.author | Pich, Oriol | |
| dc.contributor.author | Reyes-Salazar, Iker | |
| dc.contributor.author | Rubio-Perez, Carlota | |
| dc.contributor.author | Sabarinathan, Radhakrishnan | |
| dc.contributor.author | Tamborero, David | |
| dc.contributor.author | Aymerich Gregorio, Marta | |
| dc.contributor.author | Campo Güerri, Elias | |
| dc.contributor.author | López Guillermo, Armando | |
| dc.contributor.author | Gelpi Buchaca, Josep Lluís | |
| dc.contributor.author | Rabionet Janssen, Raquel | |
| dc.date.accessioned | 2024-02-19T15:10:37Z | |
| dc.date.available | 2024-02-19T15:10:37Z | |
| dc.date.issued | 2020-02-05 | |
| dc.date.updated | 2024-02-19T15:10:37Z | |
| dc.description.abstract | The discovery of driver mutations is one of the key motivations for cancer genome sequencing. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, which aggregated whole genome sequencing data from 2658 cancers across 38 tumour types, we describe DriverPower, a software package that uses mutational burden and functional impact evidence to identify driver mutations in coding and non-coding sites within cancer whole genomes. Using a total of 1373 genomic features derived from public sources, DriverPower’s background mutation model explains up to 93% of the regional variance in the mutation rate across multiple tumour types. By incorporating functional impact scores, we are able to further increase the accuracy of driver discovery. Testing across a collection of 2583 cancer genomes from the PCAWG project, DriverPower identifies 217 coding and 95 non-coding driver candidates. Comparing to six published methods used by the PCAWG Drivers and Functional Interpretation Working Group, DriverPower has the highest F1 score for both coding and non-coding driver discovery. This demonstrates that DriverPower is an effective framework for computational driver discovery. | |
| dc.format.extent | 12 p. | |
| dc.format.mimetype | application/pdf | |
| dc.identifier.idgrec | 728365 | |
| dc.identifier.issn | 2041-1723 | |
| dc.identifier.uri | https://hdl.handle.net/2445/207742 | |
| dc.language.iso | eng | |
| dc.publisher | Nature Publishing Group | |
| dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/https://doi.org/10.1038/s41467-019-13929-1 | |
| dc.relation.ispartof | Nature Communications, 2020, vol. 11, num.1, p. 1-12 | |
| dc.relation.uri | https://doi.org/https://doi.org/10.1038/s41467-019-13929-1 | |
| dc.rights | cc-by (c) Shuai, S. et al., 2020 | |
| dc.rights.accessRights | info:eu-repo/semantics/openAccess | |
| dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
| dc.source | Articles publicats en revistes (Fonaments Clínics) | |
| dc.subject.classification | Processament de dades | |
| dc.subject.classification | Càncer | |
| dc.subject.classification | Genòmica | |
| dc.subject.other | Data processing | |
| dc.subject.other | Cancer | |
| dc.subject.other | Genomics | |
| dc.title | Combined burden and functional impact tests for cancer driver discovery using DriverPower | |
| dc.type | info:eu-repo/semantics/article | |
| dc.type | info:eu-repo/semantics/publishedVersion |
Fitxers
Paquet original
1 - 1 de 1