Thermoplasmonic Polymersome Membranes by In Situ Synthesis

dc.contributor.authorBarbieri, Valentino
dc.contributor.authorGonzález Colsa, Javier
dc.contributor.authorMatias, Diana
dc.contributor.authorDuro-Castano, Aroa
dc.contributor.authorThapa, Anshu
dc.contributor.authorRuiz-Perez, Lorena
dc.contributor.authorAlbella, Pablo
dc.contributor.authorVolpe, Giorgio
dc.contributor.authorBattaglia, Giuseppe
dc.date.accessioned2025-11-14T11:31:03Z
dc.date.available2025-11-14T11:31:03Z
dc.date.issued2025-04-18
dc.date.updated2025-11-14T11:31:03Z
dc.description.abstractThermoplasmonic nanoparticles, known for releasing heat upon illumination, find diverse applications in catalysis, optics, and biomedicine. Incorporating plasmonic metals within organic vesicle membranes can lead to the formation of nanoreactors capable of regulating temperature-sensitive microscopic processes. Yet, the controlled formation of stable hybrid vesicles displaying significant thermoplasmonic properties remains challenging. This work presents the in situ synthesis of highly efficient thermoplasmonic polymer vesicles, or hybrid polymersomes, by nucleating ∼2 nm gold nanoparticles within preformed polymersome membranes. This process preserves the vesicles’ morphology, stability, and overall functionality. Despite the small size of the embedded plasmonic nanoparticles, these hybrid polymersomes can efficiently convert laser light into a notable temperature increase on a larger scale through collective heating. We develop a theoretical framework that rationalizes the structure–property relations of hybrid polymersomes and accurately predicts their collective thermoplasmonic response. Finally, we demonstrate the biomedical potential of our polymersomes by employing their photothermal properties to induce the hyperthermal death of cancer cells in vitro, an effect amplified by their superior cellular uptake. We envision that these hybrid polymersomes will evolve into a versatile platform for precise control over nanoscale chemical and biological processes through plasmonic heating, unlocking numerous opportunities across various scientific and medical contexts.
dc.format.extent4 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec758614
dc.identifier.issn1936-0851
dc.identifier.urihttps://hdl.handle.net/2445/224385
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1021/acsnano.4c14093
dc.relation.ispartofACS Nano, 2025, vol. 19, num.16, p. 15331-15334
dc.relation.urihttps://doi.org/10.1021/acsnano.4c14093
dc.rightscc-by (c) Barbieri, Valentino, et al., 2025
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Física Aplicada)
dc.subject.classificationCol·loides
dc.subject.classificationOr
dc.subject.classificationLàsers
dc.subject.classificationMetalls
dc.subject.classificationNanopartícules
dc.subject.otherColloids
dc.subject.otherGold
dc.subject.otherLasers
dc.subject.otherMetals
dc.subject.otherNanoparticles
dc.titleThermoplasmonic Polymersome Membranes by In Situ Synthesis
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
894109.pdf
Mida:
2.16 MB
Format:
Adobe Portable Document Format