Microscopic and Macroscopic States in Neural Networks

dc.contributor.advisorRoxin, Alex
dc.contributor.advisorDíaz Guilera, Albert
dc.contributor.authorValentí Rojas, Gerard
dc.date.accessioned2017-11-15T15:11:44Z
dc.date.available2017-11-15T15:11:44Z
dc.date.issued2017-06
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2017, Tutors: Alexander Roxin, Albert Díaz-Guileraca
dc.description.abstractFiring patterns in neurons are thought to be key in the understanding of how the brain works. Trying to model the behaviour of neural networks is the current state-of-the-art in several scientific disciplines, but often these models are analytically intractable due to their complexity and high dimensionality. Recently, the Lorentz Ansatz proposed by Montbrió, Pazó and Roxin, showed that an exact description of macroscopic observables for a neural network is possible under some constraints. This thesis is aimed to re-deriving the ansatz based on the existing work of Montbrió et. al. and analyzing the different states encountered in the model using Bifurcation Theory. We also extend the ansatz and relax some of the constraints. Furthermore, we build and run some simulations of a Quadratic Integrate-and-Fire network to test the theory and its generalization.ca
dc.format.extent5 p.
dc.format.mimetypeapplication/pdf
dc.identifier.urihttps://hdl.handle.net/2445/117809
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Valentí, 2017
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.sourceTreballs Finals de Grau (TFG) - Física
dc.subject.classificationXarxes neuronals (Neurobiologia)cat
dc.subject.classificationModelització multiescalacat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherNeural networks (Neurobiology)eng
dc.subject.otherMultiscale modelingeng
dc.subject.otherBachelor's theseseng
dc.titleMicroscopic and Macroscopic States in Neural Networkseng
dc.typeinfo:eu-repo/semantics/bachelorThesisca

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
Valenti Rojas Gerard.pdf
Mida:
630.48 KB
Format:
Adobe Portable Document Format