Determination of Sialic Acid Isomers from Released N-Glycans Using Ion Mobility Spectrometry

dc.contributor.authorManz, Christian
dc.contributor.authorMancera Arteu, Montserrat
dc.contributor.authorZappe, Andreas
dc.contributor.authorHanozin, Emeline
dc.contributor.authorPolewski, Lukasz
dc.contributor.authorGiménez López, Estela
dc.contributor.authorSanz Nebot, María Victoria
dc.contributor.authorPagel, Kevin
dc.date.accessioned2022-11-10T18:38:20Z
dc.date.available2022-11-10T18:38:20Z
dc.date.issued2022-09-19
dc.date.updated2022-11-10T18:38:20Z
dc.description.abstractComplex carbohydrates are ubiquitous in nature and represent one of the major classes of biopolymers. They can exhibit highly diverse structures with multiple branched sites as well as a complex regio- and stereochemistry. A common way to analytically address this complexity is liquid chromatography (LC) in combination with mass spectrometry (MS). However, MS-based detection often does not provide sufficient information to distinguish glycan isomers. Ion mobility-mass spectrometry (IM-MS)─a technique that separates ions based on their size, charge, and shape─has recently shown great potential to solve this problem by identifying characteristic isomeric glycan features such as the sialylation and fucosylation pattern. However, while both LC-MS and IM-MS have clearly proven their individual capabilities for glycan analysis, attempts to combine both methods into a consistent workflow are lacking. Here, we close this gap and combine hydrophilic interaction liquid chromatography (HILIC) with IM-MS to analyze the glycan structures released from human alpha-1-acid glycoprotein (hAGP). HILIC separates the crude mixture of highly sialylated multi-antennary glycans, MS provides information on glycan composition, and IMS is used to distinguish and quantify α2,6- and α2,3-linked sialic acid isomers based on characteristic fragments. Further, the technique can support the assignment of antenna fucosylation. This feature mapping can confidently assign glycan isomers with multiple sialic acids within one LC-IM-MS run and is fully compatible with existing workflows for N-glycan analysis.
dc.format.extent9 p.
dc.format.mimetypeapplication/pdf
dc.identifier.idgrec725098
dc.identifier.issn0003-2700
dc.identifier.urihttps://hdl.handle.net/2445/190701
dc.language.isoeng
dc.publisherAmerican Chemical Society
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1021/acs.analchem.2c00783
dc.relation.ispartofAnalytical Chemistry, 2022, vol. 94, p. 13323-13331
dc.relation.urihttps://doi.org/10.1021/acs.analchem.2c00783
dc.rightscc-by (c) Manz, Christian et al., 2022
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Enginyeria Química i Química Analítica)
dc.subject.classificationBiopolímers
dc.subject.classificationEspectrometria de masses
dc.subject.classificationIons
dc.subject.otherBiopolymers
dc.subject.otherMass spectrometry
dc.subject.otherIons
dc.titleDetermination of Sialic Acid Isomers from Released N-Glycans Using Ion Mobility Spectrometry
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion

Fitxers

Paquet original

Mostrant 1 - 1 de 1
Carregant...
Miniatura
Nom:
725098.pdf
Mida:
846.19 KB
Format:
Adobe Portable Document Format