Carregant...
Miniatura

Tipus de document

Treball de fi de grau

Data de publicació

Llicència de publicació

cc-by-nc-nd (c) Dana, 2023
Si us plau utilitzeu sempre aquest identificador per citar o enllaçar aquest document: https://hdl.handle.net/2445/201012

Detection of Gravitational Wave signals using Machine Learning methods and Generative Pre-trained Transformers

Títol de la revista

ISSN de la revista

Títol del volum

Recurs relacionat

Resum

We use Machine Learning methods based on Convolutional Neural Networks to search for gravitational waves signals above the background noise distribution for a data set of simulated gravitational waves and real noise signals from three detectors (LIGO Hanford, LIGO Livingston, and Virgo). A training data set is used to train the ML method to classify data streams in two groups: gravitational wave plus noise (label 1) or only noise (label 0). Later, the method predicts if data streams from a testing data set belong to one or an other category. To generate the code that implements the CNN algorithm we use Generative Pre-trained Transformers, specifically ChatGPT based on GPT-3 and compare them to a human-made CNN. The ML methods are capable to detect gravitational waves if we give ChatGPT freedom to create a CNN without specifying the parameters or the architecture, but are not satisfactory if we try to direct ChatGPT to a specific type of code.

Descripció

Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2023, Tutors: Tomás Andrade Weber, Roberto Emparan García de Salazar

Citació

Citació

DANA RUIZ, Abel. Detection of Gravitational Wave signals using Machine Learning methods and Generative Pre-trained Transformers. [consulta: 10 de gener de 2026]. [Disponible a: https://hdl.handle.net/2445/201012]

Exportar metadades

JSON - METS

Compartir registre